Introduction to Programming Concepts (CTM 1.1-1.11)

Carlos Varela
RPI
February 26, 2015

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy
Introduction to Oz

- An introduction to programming concepts
- Declarative variables
- Structured data (example: lists)
- Functions over lists
- Correctness and complexity
- Lazy functions
- Higher-order programming
- Concurrency and dataflow
Variables

• Variables are short-cuts for values, they cannot be assigned more than once

 declare

 \texttt{V = 9999*9999}

 \texttt{Browse V*V}

• Variable identifiers: is what you type
• Store variable: is part of the memory system
• The \texttt{declare} statement creates a store variable and assigns its memory address to the identifier ’\texttt{V}’ in the environment
Functions

• Compute the factorial function:

 \[n! = 1 \times 2 \times \cdots \times (n - 1) \times n \]

• Start with the mathematical definition

 \[
 \text{declare} \\
 \text{fun \{Fact N\}} \\
 \quad \text{if \(N==0\) then 1 else \(N*\{Fact N-1\}\) end} \\
 \text{end}
 \]

• Fact is declared in the environment

• Try large factorial \{Browse \{Fact 100\}\}

 \[
 0! = 1 \\
 n! = n \times (n - 1)! \text{ if } n > 0
 \]
Composing functions

- Combinations of \(r \) items taken from \(n \).
- The number of subsets of size \(r \) taken from a set of size \(n \)

\[
\binom{n}{r} = \frac{n!}{r!(n-r)!}
\]

```ml
declare
fun {Comb N R}
{Fact N} div ({Fact R}*{Fact N-R})
end
```

- Example of functional abstraction
Structured data (lists)

- Calculate Pascal triangle 1
- Write a function that calculates the nth row as 1 1
 one structured value
- A list is a sequence of elements: 1 2 1
 1 4 6 4 1
- The empty list is written nil 1 3 3 1
- Lists are created by means of ”|” (cons) 1 4 6 4 1

```declare
H=1
T = [2 3 4 5]
{Browse H\|T} % This will show [1 2 3 4 5]```
Lists (2)

- Taking lists apart (selecting components)
- A cons has two components: a head, and a tail

```plaintext
declare L = [5 6 7 8]
L.1 gives 5
L.2 give [6 7 8]
```

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy
Pattern matching

- Another way to take a list apart is by use of pattern matching with a case instruction

```plaintext
case L of H|T then {Browse H} {Browse T}
 else {Browse ‘empty list’}
end
```
Functions over lists

- Compute the function \{Pascal N\}
- Takes an integer N, and returns the Nth row of a Pascal triangle as a list
  1. For row 1, the result is \[1\]
  2. For row N, shift to left row N-1 and shift to the right row N-1
  3. Align and add the shifted rows element-wise to get row N

\[
\begin{array}{ccc}
\text{Shift left} & [1 & 3 & 3 & 1 & 0] \\
\text{Shift right} & [0 & 1 & 3 & 3 & 1] \\
\end{array}
\]
Functions over lists (2)

```plaintext
declare
fun {Pascal N}
 if N==1 then [1]
 else
 {AddList
 {ShiftLeft {Pascal N-1}}
 {ShiftRight {Pascal N-1}}}
 end
end
```

[Diagram of Pascal N, Pascal N-1, ShiftLeft, ShiftRight, AddList connections]
Functions over lists (3)

\[
\text{fun } \{\text{ShiftLeft } L\} \\
\quad \text{case } L \text{ of } H\mid T \text{ then} \\
\quad \quad H\mid \{\text{ShiftLeft } T\} \\
\quad \text{else } [0] \text{ end} \\
\quad \text{end} \\
\text{fun } \{\text{ShiftRight } L\} \ 0\mid L \text{ end}
\]

\[
\text{fun } \{\text{AddList } L1 \ L2\} \\
\quad \text{case } L1 \text{ of } H1\mid T1 \text{ then} \\
\quad \quad \text{case } L2 \text{ of } H2\mid T2 \text{ then} \\
\quad \quad \quad H1\!+\!H2\mid \{\text{AddList } T1 \ T2\} \\
\quad \quad \text{end} \\
\quad \text{else nil end} \\
\quad \text{end}
\]
Top-down program development

• Understand how to solve the problem by hand
• Try to solve the task by decomposing it to simpler tasks
• Devise the main function (main task) in terms of suitable auxiliary functions (subtasks) that simplify the solution (ShiftLeft, ShiftRight and AddList)
• Complete the solution by writing the auxiliary functions
• Test your program bottom-up: auxiliary functions first.
Is your program correct?

• “A program is correct when it does what we would like it to do”
• In general we need to reason about the program:
  • **Semantics for the language**: a precise model of the operations of the programming language
  • **Program specification**: a definition of the output in terms of the input (usually a mathematical function or relation)
  • Use mathematical techniques to reason about the program, using programming language semantics
Mathematical induction

- Select one or more inputs to the function
- Show the program is correct for the *simple cases* (base cases)
- Show that if the program is correct for a *given case*, it is then correct for the *next case*.
- For natural numbers, the base case is either 0 or 1, and for any number n the next case is n+1
- For lists, the base case is nil, or a list with one or a few elements, and for any list T the next case is H|T
Correctness of factorial

```plaintext
fun {Fact N}
 if N==0 then 1 else N*{Fact N-1} end
end

\[1 \times 2 \times \cdots \times (n - 1) \times n \]

- Base Case N=0: {Fact 0} returns 1
- Inductive Case N>0: {Fact N} returns N*{Fact N-1} assume {Fact N-1} is correct, from the spec we see that {Fact N} is N*{Fact N-1}
Multiple accumulators

- Consider a stack machine for evaluating arithmetic expressions
- Example: (1+4)-3
- The machine executes the following instructions

 push(1)
 push(4)
 plus
 push(3)
 minus

 4
 1

 5

 3
 5

 2
Multiple accumulators (2)

- Example: (1+4)-3
- The arithmetic expressions are represented as trees:
 \[
 \text{minus}(\text{plus}(1 \ 4) \ 3)
 \]
- Write a procedure that takes arithmetic expressions represented as trees and output a list of stack machine instructions and counts the number of instructions

\[
\text{proc } \{\text{ExprCode} \ \text{Expr} \ \text{Cin} \ \text{Cout} \ \text{Nin} \ \text{Nout}\}
\]

- Cin: initial list of instructions
- Cout: final list of instructions
- Nin: initial count
- Nout: final count
Multiple accumulators (3)

```plaintext
proc {ExprCode Expr C0 C N0 N}
    case Expr
    of plus(Expr1 Expr2) then C1 N1 in
        C1 = plus|C0
        N1 = N0 + 1
        {SeqCode [Expr2 Expr1] C1 C N1 N}
    [] minus(Expr1 Expr2) then C1 N1 in
        C1 = minus|C0
        N1 = N0 + 1
        {SeqCode [Expr2 Expr1] C1 C N1 N}
    [] I andthen {IsInt I} then
        C = push(I)|C0
        N = N0 + 1
    end
end
```
Multiple accumulators (4)

```
proc {ExprCode Expr C0 C N0 N}
    case Expr
    of plus(Expr1 Expr2) then C1 N1 in
        C1 = plus|C0
        N1 = N0 + 1
    {SeqCode [Expr2 Expr1] C1 C N1 N}
    [] minus(Expr1 Expr2) then C1 N1 in
        C1 = minus|C0
        N1 = N0 + 1
    {SeqCode [Expr2 Expr1] C1 C N1 N}
    [] I andthen {IsInt I} then
        C = push(I)|C0
        N = N0 + 1
    end
end

proc {SeqCode Es C0 C N0 N}
    case Es
    of nil then C = C0 N = N0
    [] E|Er then N1 C1 in
        {ExprCode E C0 C1 N0 N1}
    {SeqCode Er C1 C N1 N}
    end
end
```
Shorter version (4)

```
proc {ExprCode Expr C0 C N0 N}
  case Expr
    of plus(Expr1 Expr2) then
        {SeqCode [Expr2 Expr1] plus|C0 C N0 + 1 N}
    minus(Expr1 Expr2) then
        {SeqCode [Expr2 Expr1] minus|C0 C N0 + 1 N}
    I andthen {IsInt I} then
        C = push(I)|C0
        N = N0 + 1
  end
end
```

```
proc {SeqCode Es C0 C N0 N}
  case Es
    of nil then C = C0 N = N0
    [] E|Er then N1 C1 in
        {ExprCode E C0 C1 N0 N1}
        {SeqCode Er C1 C N1 N}
  end
end
```
Functional style (4)

fun \{ ExprCode Expr \{ t(C0 N0) \} \}
 case Expr
 of plus(Expr1 Expr2) then
 \{ SeqCode [Expr2 Expr1] \{ t(plus|C0 N0 + 1) \} \}
 minus(Expr1 Expr2) then
 \{ SeqCode [Expr2 Expr1] \{ t(minus|C0 N0 + 1) \} \}
 \[] I andthen \{ IsInt I \} then
 \{ t(push(I)|C0 N0 + 1) \}
 end
end

fun \{ SeqCode Es T \}
 case Es
 of nil then T
 \[] E|Er then
 T1 = \{ ExprCode E T \} in
 \{ SeqCode Er T1 \}
 end
end
Complexity

- Pascal runs very slow, try \{Pascal 24\}
- \{Pascal 20\} calls: \{Pascal 19\} twice, \{Pascal 18\} four times, \{Pascal 17\} eight times, ..., \{Pascal 1\} 2^{19} times
- Execution time of a program up to a constant factor is called the program’s *time complexity*.
- Time complexity of \{Pascal N\} is proportional to 2^N (exponential)
- Programs with exponential time complexity are impractical

```pascal
declare
fun \{Pascal N\}
  if N==1 then [1]
  else
    {AddList
      {ShiftLeft \{Pascal N-1\}}
      {ShiftRight \{Pascal N-1\}}}
  end
end
```
Faster Pascal

- Introduce a local variable L
- Compute \{FastPascal N-1\} only once
- Try with 30 rows.
- FastPascal is called N times, each time a list on the average of size N/2 is processed
- The time complexity is proportional to N^2 (polynomial)
- Low order polynomial programs are practical.

```pascal
fun \{FastPascal N\}
  if N==1 then [1]
  else
    local L in
    L=\{FastPascal N-1\}
    \{AddList \{ShiftLeft L\} \{ShiftRight L\}\}
  end
end
end
```
Lazy evaluation

• The functions written so far are evaluated eagerly (as soon as they are called)

• Another way is lazy evaluation where a computation is done only when the result is needed

• Calculates the infinite list:
 0 | 1 | 2 | 3 | ...

```haskell
declare
fun lazy {Ints N}
  N|{Ints N+1}
end
```
Lazy evaluation (2)

- Write a function that computes as many rows of Pascal’s triangle as needed
- We do not know how many beforehand
- A function is lazy if it is evaluated only when its result is needed
- The function PascalList is evaluated when needed

```plaintext
fun lazy {PascalList Row}
  Row | {PascalList
       {AddList
        {ShiftLeft Row}
        {ShiftRight Row}}}
end
```
Lazy evaluation (3)

- Lazy evaluation will avoid redoing work if you decide first you need the 10th row and later the 11th row.
- The function continues where it left off.

\begin{verbatim}
declare L = \{PascalList [1]\}
{Browse L}
{Browse L.1}
{Browse L.2.1}
L<Future>
[1]
[1 1]
\end{verbatim}
Higher-order programming

• Assume we want to write another Pascal function, which instead of adding numbers, performs exclusive-or on them
• It calculates for each number whether it is odd or even (parity)
• Either write a new function each time we need a new operation, or write one generic function that takes an operation (another function) as argument
• The ability to pass functions as arguments, or return a function as a result is called *higher-order programming*
• Higher-order programming is an aid to build generic abstractions
Variations of Pascal

- Compute the parity Pascal triangle

```plaintext
fun {Xor X Y} if X==Y then 0 else 1 end end
```

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy
fun \{\text{GenericPascal } \text{Op} \ N\} \\
\quad \text{if } N==1 \text{ then } [1] \\
\quad \text{else } L \text{ in } L = \{\text{GenericPascal } \text{Op} \ N-1\} \\
\quad \quad \{\text{OpList Op} \{\text{ShiftLeft} \ L\} \{\text{ShiftRight} \ L\}\} \\
\quad \text{end} \\
\text{end} \\
fun \{\text{OpList Op L1 L2}\} \\
\quad \text{case } L1 \text{ of } H1|T1 \text{ then} \\
\quad \quad \text{case } L2 \text{ of } H2|T2 \text{ then} \\
\quad \quad \quad \{\text{Op} \ H1 \ H2\}\{\text{OpList Op} \ T1 \ T2\} \\
\quad \quad \text{end} \\
\quad \text{else nil end} \\
\text{end} \\
fun \{\text{Add N1 N2} \} N1+N2 \text{ end} \\
fun \{\text{Xor N1 N2}\} \\
\quad \text{if } N1==N2 \text{ then } 0 \text{ else } 1 \text{ end} \\
\text{end} \\
fun \{\text{Pascal N}\} \{\text{GenericPascal Add N}\} \text{ end} \\
fun \{\text{ParityPascal N}\} \\
\quad \{\text{GenericPascal Xor N}\} \\
\text{end}
Concurrency

• How to do several things at once
• Concurrency: running several activities each running at its own pace
• A thread is an executing sequential program
• A program can have multiple threads by using the thread instruction
• {Browse 99*99} can immediately respond while Pascal is computing

```pascal
thread 
  P in 
  P = {Pascal 21}
  {Browse P}
end
{Browse 99*99}
```
Dataflow

- What happens when multiple threads try to communicate?
- A simple way is to make communicating threads synchronize on the availability of data (data-driven execution)
- If an operation tries to use a variable that is not yet bound it will wait
- The variable is called a dataflow variable
Dataflow (II)

• Two important properties of dataflow
 – Calculations work correctly independent of how they are partitioned between threads (concurrent activities)
 – Calculations are patient, they do not signal error; they wait for data availability

• The dataflow property of variables makes sense when programs are composed of multiple threads

declare X
thread
 {Delay 5000} X=99
End
{Browse ‘Start’} {Browse X*X}

declar X
thread
 {Browse ‘Start’} {Browse X*X}
end
{Delay 5000} X=99
Exercises

30. Prove the correctness of AddList and ShiftLeft.

31. CTM Exercise 1.18.5. (page 24)

32. CTM Exercise 1.18.6. (page 24)
 c) Change GenericPascal so that it also receives a number to use as an identity for the operation Op: \{GenericPascal Op I N\}. For example, you could then use it as:
 \{GenericPascal Add 0 N\}, or
 \{GenericPascal fun \{$ X Y\} X*Y end 1 N\}

33. Prove that the alternative version of Pascal triangle (not using ShiftLeft) is correct. Make AddList and OpList commutative.

34. When combining concurrency and dataflow behavior, do you ever get non-determinism? Explain why or why not.