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Programming Concepts 
•  A computation model: describes a language and how the 

sentences (expressions, statements) of the language are 
executed by an abstract machine 

•  A set of programming techniques: to express solutions to 
the problems you want to solve 

•  A set of reasoning techniques: to reason about programs to 
increase the confidence that they behave correctly and to 
calculate their efficiency 
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Declarative Programming Model 
•  Guarantees that the computations are evaluating functions 

on (partial) data structures 
•  The core of functional programming (LISP, Scheme, ML, 

Haskell) 
•  The core of logic programming (Prolog, Mercury) 
•  Stateless programming vs. stateful (imperative) 

programming 
•  We will see how declarative programming underlies 

concurrent and object-oriented programming (Erlang, C++, 
Java, SALSA) 
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Defining a programming language 

•  Syntax (grammar) 
•  Semantics (meaning) 
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Language syntax 
•  Defines what are the legal programs, i.e. programs that can 

be executed by a machine (interpreter) 
•  Syntax is defined by grammar rules 
•  A grammar defines how to make ‘sentences’ out of 
‘words’ 

•  For programming languages: sentences are called 
statements (commands, expressions) 

•  For programming languages: words are called tokens 
•  Grammar rules are used to describe both tokens and 

statements 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6 

Language syntax (2) 
•  A statement is a sequence of tokens 
•  A token is a sequence of characters 
•  A program that recognizes a 

sequence of characters and produces 
a sequence of tokens is called a 
lexical analyzer 

•  A program that recognizes a 
sequence of tokens and produces a 
statement representation is called a 
parser 

•  Normally statements are represented 
as (parse) trees 

Lexical analyzer 

Parser 

characters 

tokens 

sentences 
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Extended Backus-Naur Form 
•  EBNF (Extended Backus-Naur Form) is a common 

notation to define grammars for programming languages 
•  Terminal symbols and non-terminal symbols 
•  Terminal symbol is a token 
•  Nonterminal symbol is a sequence of tokens, and is 

represented by a grammar rule 
 〈nonterminal〉 ::= 〈rule body〉 
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Grammar rules 
•  〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
•  〈digit〉 is defined to represent one of the ten tokens 0, 1, …, 9 
•  The symbol ‘|’ is read as ‘or’ 
•  Another reading is that 〈digit〉 describes the set of tokens {0,1,

…, 9} 
•  Grammar rules may refer to other nonterminals 
•  〈integer〉 ::= 〈digit〉 { 〈digit〉 } 
•  〈integer〉 is defined as the sequence of a 〈digit〉 followed by 

zero or more 〈digit〉’s 
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How to read grammar rules 
•  〈x〉 : is a nonterminal x 
•  〈x〉 ::= Body : 〈x〉 is defined by Body 
•  〈x〉 | 〈y〉 : either 〈x〉 or 〈y〉  (choice) 
•  〈x〉 〈y〉 : the sequence 〈x〉  followed by 〈y〉 
•  { 〈x〉 } : a sequence of zero or more occurrences of 〈x〉  
•  { 〈x〉 }+ : a sequence of one or more occurrences of 〈x〉 
•  [ 〈x〉 ] : zero or one occurrences of 〈x〉  
•  Read the grammar rule from left to right to give the following 

sequence: 
–  Each terminal symbol is added to the sequence 
–  Each nonterminal is replaced by its definition 
–  For each 〈x〉 | 〈y〉 pick any of the alternatives 
–  For each  〈x〉 〈y〉 add the sequence 〈x〉 followed by the sequence 〈y〉  
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Context-free and context-sensitive 
grammars 

•  Grammar rules can be used either 
–  to verify that a statement is legal, or 
–  to generate all possible statements 

•  The set of all possible statements generated from a grammar and one 
nonterminal symbol is called a (formal) language 

•  EBNF notation defines a class of grammars called context-free grammars 
•  Expansion of a nonterminal is always the same regardless of where it is 

used 
•  For practical languages, a context-free grammar is not enough, usually a 

condition on the context is sometimes added 
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Context-free and context-sensitive 
grammars 

•  It is easy to read and understand 
•  Defines a superset of the language 

•  Expresses restrictions imposed by 
the language (e.g. variable must 
be declared before use) 

•  Makes the grammar rules context 
sensitive 

Context-free grammar 
(e.g. with EBNF)  

+ 

Set of extra conditions  
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Examples 
•  〈statement〉 ::= skip | 〈expression〉 ‘=‘ 〈expression〉 | … 
•  〈expression〉 ::= 〈variable〉 | 〈integer〉 | … 

•  〈statement〉 ::= if 〈expression〉 then 〈statement〉  
                         { elseif 〈expression〉 then 〈statement〉 } 
                         [ else 〈statement〉 ] end | … 
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Example: (Parse Trees) 
•  if 〈expression〉 then 〈statement〉1 else 〈statement〉2 end 

conditional 

expression statement1 statement2 

if then else 
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Language Semantics 
•  Semantics defines what a program does when it executes 
•  Semantics should be simple and yet allows reasoning about 

programs (correctness, execution time, and memory use) 
•  How can this be achieved for a practical language that is 

used to build complex systems (millions of lines of code)? 
•  The kernel language approach 
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Kernel Language Approach 
•  Define a very simple language (kernel language) 
•  Define the computation model of the kernel language 
•  By defining how the constructs (statements) of the 

language manipulate (create and transform) the data 
structures (the entities) of the language 

•  Define a mapping scheme (translation) of the full 
programming language into the kernel language 

•  Two kinds of translations: linguistic abstractions and 
syntactic sugar  
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Kernel Language Approach 

Practical language 

kernel language 

Translation 

fun {Sqr X} X*X end 
B = {Sqr {Sqr A}} 

proc {Sqr X Y}  
     { * X X Y} 
end 
local T in 
     {Sqr A T} 
     {Sqr T B} 
end 

•  Provides useful abstractions 
   for the programmer 
•  Can be extended with linguistic 
   abstractions 

•  Is easy to understand and reason 
   with 
•  Has a precise (formal) semantics 
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Linguistic abstractions vs. syntactic 
sugar 

•  Linguistic abstractions, provide higher level concepts that 
the programmer can use to model and reason about 
programs (systems) 

•  Examples: functions (fun), iterations (for), classes and 
objects (class), mailboxes (receive) 

•  The functions (calls) are translated to procedures (calls) 
•  The translation answers questions about the function call: 

 {F1 {F2 X} {F3 X}} 
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Linguistic abstractions vs. syntactic 
sugar 

•  Linguistic abstractions, provide higher 
level concepts that the programmer can 
use to model and reason about programs 
(systems) 

•  Syntactic sugar are short cuts and 
conveniences to improve readability 

if N==1 then [1] 
else 
     local L in 
         … 
     end 
end 

if N==1 then [1] 
else L in 
         … 
end 
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Approaches to semantics 

Programming Language 

Kernel Language 

Operational model 

Formal calculus Abstract machine 

Aid the programmer 
in reasoning and 
understanding 

Mathematical study of 
programming (languages) 
λ-calculus, predicate calculus, 
π-calculus 

Aid to the implementer 
Efficient execution on 
a real machine 
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Exercises 
35. Write a valid EBNF grammar for lists of non-negative 

integers in Oz. 
36. Write a valid EBNF grammar for the λ-calculus. 

•  Which are terminal and which are non-terminal symbols? 
•  Draw the parse tree for the expression: 

((λx.x λy.y) λz.z) 
37. The grammar 

 <exp>  ::=  <int> | <exp> <op> <exp> 
 <op>  ::=  + | * 

 is ambiguous (e.g., it can produce two parse trees for the 
expression 2*3+4).  Rewrite the grammar so that it 
accepts the same language unambiguously. 


