Declarative Computation Model
Defining practical programming languages (CTM 2.1)

Carlos Varela
RPI

March 2, 2015

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Programming Concepts

* A computation model: describes a language and how the
sentences (expressions, statements) of the language are
executed by an abstract machine

* A set of programming techniques: to express solutions to
the problems you want to solve

* A set of reasoning techniques: to reason about programs to
increase the confidence that they behave correctly and to
calculate their efficiency

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Declarative Programming Model

Guarantees that the computations are evaluating functions
on (partial) data structures

The core of functional programming (LISP, Scheme, ML,
Haskell)

The core of logic programming (Prolog, Mercury)

Stateless programming vs. stateful (imperative)
programming

We will see how declarative programming underlies
concurrent and object-oriented programming (Erlang, C++,

Java, SALSA)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

Defining a programming language

e Syntax (grammar)
e Semantics (meaning)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Language syntax

Defines what are the legal programs, 1.e. programs that can
be executed by a machine (interpreter)

Syntax 1s defined by grammar rules

A grammar defines how to make ‘sentences’ out of
‘words’

For programming languages: sentences are called
statements (commands, expressions)

For programming languages: words are called tokens

Grammar rules are used to describe both tokens and
statements

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Language syntax (2)

A statement 1s a sequence of tokens

A token 1s a sequence of characters
characters

A program that recognizes a
sequence of characters and produces
a sequence of tokens 1s called a
lexical analyzer

v

Lexical analyzer

. tokens
A program that recognizes a

sequence of tokens and produces a
statement representation is called a Parser
parser

Normally statements are represented sentences
as (parse) trees

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

Extended Backus-Naur Form

EBNF (Extended Backus-Naur Form) 1s a common
notation to define grammars for programming languages

Terminal symbols and non-terminal symbols
Terminal symbol 1s a token

Nonterminal symbol 1s a sequence of tokens, and 1s
represented by a grammar rule

(nonterminal) ::= (rule body)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Grammar rules

(digity :=01]11]2]3]4|5|6|7|8]|9
(digit) is defined to represent one of the ten tokens 0, 1, ..., 9
The symbol ‘| isread as ‘or’

Another reading is that (digit) describes the set of tokens {0,1,
s 9}

Grammar rules may refer to other nonterminals

(integer) ::= (digit) { (digit) }
(integer) is defined as the sequence of a (digit) followed by
zero or more {digit)’ s

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

How to read grammar rules

(x) : is a nonterminal x

(x) ::= Body : {x) is defined by Body

(x) | {y) : either {x) or (y) (choice)

(x) (y) : the sequence (x) followed by ()
{(x)}:asequence of zero or more occurrences of {x)
{{x)}" : a sequence of one or more occurrences of (x)
[(x)]: zero or one occurrences of (x)

Read the grammar rule from left to right to give the following
sequence:

— Each terminal symbol is added to the sequence

— Each nonterminal is replaced by its definition

— For each (x) | (v) pick any of the alternatives

— For each (x) (y)add the sequence {x) followed by the sequence ()

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Context-free and context-sensitive
grammars

Grammar rules can be used either
— to verify that a statement is legal, or
— to generate all possible statements

The set of all possible statements generated from a grammar and one
nonterminal symbol is called a (formal) language

EBNF notation defines a class of grammars called context-free grammars

Expansion of a nonterminal is always the same regardless of where it is
used

For practical languages, a context-free grammar 1s not enough, usually a
condition on the context 1s sometimes added

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Context-free and context-sensitive
grammars

It 1s easy to read and understand Context-free grammar

Defines a superset of the language (e.g. with EBNF)

|

Expresses restrictions imposed by
the language (e.g. variable must
be declared before use)

Set of extra conditions

Makes the grammar rules context
sensitive

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

11

Examples

(statement) ::= skip | (expression) ‘= (expression) | ...
(expression) ::= (variable) | (integer) | ...

(statement) ::= if (expression) then (statement)
{ elseif (expression) then (statement) }
[else (statement)] end | ...

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

12

Example: (Parse Trees)

if (expression) then (statement), else (statement), end

conditional
if then else
expression statement, statement,

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

13

Language Semantics

Semantics defines what a program does when it executes

Semantics should be simple and yet allows reasoning about
programs (correctness, execution time, and memory use)

How can this be achieved for a practical language that 1s
used to build complex systems (millions of lines of code)?

The kernel language approach

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Kernel Language Approach

Define a very simple language (kernel language)
Define the computation model of the kernel language

By defining how the constructs (statements) of the
language manipulate (create and transform) the data
structures (the entities) of the language

Define a mapping scheme (translation) of the full
programming language into the kernel language

Two kinds of translations: linguistic abstractions and
syntactic sugar

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

15

Kernel Language Approach

Practical language = fun{Sar X} X*X end * Provides useful abstractions
B = {Sqr {Sqr A}} for the programmer
 Can be extended with linguistic
Translation abstractions
kernel language proc {Sqr X Y} * Is easy to understand and reason
{* XXY} with
end Has a precise (formal) semantics
local T'in
{SqrA T}
{Sar T B}
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Linguistic abstractions vs. syntactic
sugar

Linguistic abstractions, provide higher level concepts that
the programmer can use to model and reason about
programs (systems)

Examples: functions (fun), iterations (for), classes and
objects (class), mailboxes (receive)

The functions (calls) are translated to procedures (calls)

The translation answers questions about the function call:

{F1{F2 X} {F3 X}}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

17

Linguistic abstractions vs. syntactic

sugar
 Linguistic abstractions, provide higher ifN==1 then [1]
level concepts that the programmer can ~ €/s¢
local L in
use to model and reason about programs
(systems) end
» Syntactic sugar are short cuts and end
conveniences to improve readability
if N==1 then [1]
else Lin
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

18

Approaches to semantics

Programming Language
Operational model

Kernel Language Formal calculus Abstract machine

Aid the programmer Mathematical study of Aid to the implementer

in reasoning and programming (languages) Efficient execution on

understanding A-calculus, predicate calculus, a real machine
m-calculus

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

Exercises

35. Write a valid EBNF grammar for lists of non-negative
integers in Oz.
36. Write a valid EBNF grammar for the A-calculus.

e Which are terminal and which are non-terminal symbols?
* Draw the parse tree for the expression:

((AX.X Ay.y) Az.Z)
37. The grammar
<exp> = <int> | <exp> <op> <exp>
<op> = + | *

1s ambiguous (e.g., it can produce two parse trees for the
expression 2*3+4). Rewrite the grammar so that it
accepts the same language unambiguously.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

20

