
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Computation Model
Defining practical programming languages (CTM 2.1)

Carlos Varela
RPI

March 2, 2015

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Programming Concepts
•  A computation model: describes a language and how the

sentences (expressions, statements) of the language are
executed by an abstract machine

•  A set of programming techniques: to express solutions to
the problems you want to solve

•  A set of reasoning techniques: to reason about programs to
increase the confidence that they behave correctly and to
calculate their efficiency

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

Declarative Programming Model
•  Guarantees that the computations are evaluating functions

on (partial) data structures
•  The core of functional programming (LISP, Scheme, ML,

Haskell)
•  The core of logic programming (Prolog, Mercury)
•  Stateless programming vs. stateful (imperative)

programming
•  We will see how declarative programming underlies

concurrent and object-oriented programming (Erlang, C++,
Java, SALSA)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

Defining a programming language

•  Syntax (grammar)
•  Semantics (meaning)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Language syntax
•  Defines what are the legal programs, i.e. programs that can

be executed by a machine (interpreter)
•  Syntax is defined by grammar rules
•  A grammar defines how to make ‘sentences’ out of
‘words’

•  For programming languages: sentences are called
statements (commands, expressions)

•  For programming languages: words are called tokens
•  Grammar rules are used to describe both tokens and

statements

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

Language syntax (2)
•  A statement is a sequence of tokens
•  A token is a sequence of characters
•  A program that recognizes a

sequence of characters and produces
a sequence of tokens is called a
lexical analyzer

•  A program that recognizes a
sequence of tokens and produces a
statement representation is called a
parser

•  Normally statements are represented
as (parse) trees

Lexical analyzer

Parser

characters

tokens

sentences

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

Extended Backus-Naur Form
•  EBNF (Extended Backus-Naur Form) is a common

notation to define grammars for programming languages
•  Terminal symbols and non-terminal symbols
•  Terminal symbol is a token
•  Nonterminal symbol is a sequence of tokens, and is

represented by a grammar rule
 〈nonterminal〉 ::= 〈rule body〉

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

Grammar rules
•  〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
•  〈digit〉 is defined to represent one of the ten tokens 0, 1, …, 9
•  The symbol ‘|’ is read as ‘or’
•  Another reading is that 〈digit〉 describes the set of tokens {0,1,

…, 9}
•  Grammar rules may refer to other nonterminals
•  〈integer〉 ::= 〈digit〉 { 〈digit〉 }
•  〈integer〉 is defined as the sequence of a 〈digit〉 followed by

zero or more 〈digit〉’s

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

How to read grammar rules
•  〈x〉 : is a nonterminal x
•  〈x〉 ::= Body : 〈x〉 is defined by Body
•  〈x〉 | 〈y〉 : either 〈x〉 or 〈y〉 (choice)
•  〈x〉 〈y〉 : the sequence 〈x〉 followed by 〈y〉
•  { 〈x〉 } : a sequence of zero or more occurrences of 〈x〉
•  { 〈x〉 }+ : a sequence of one or more occurrences of 〈x〉
•  [〈x〉] : zero or one occurrences of 〈x〉
•  Read the grammar rule from left to right to give the following

sequence:
–  Each terminal symbol is added to the sequence
–  Each nonterminal is replaced by its definition
–  For each 〈x〉 | 〈y〉 pick any of the alternatives
–  For each 〈x〉 〈y〉 add the sequence 〈x〉 followed by the sequence 〈y〉

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Context-free and context-sensitive
grammars

•  Grammar rules can be used either
–  to verify that a statement is legal, or
–  to generate all possible statements

•  The set of all possible statements generated from a grammar and one
nonterminal symbol is called a (formal) language

•  EBNF notation defines a class of grammars called context-free grammars
•  Expansion of a nonterminal is always the same regardless of where it is

used
•  For practical languages, a context-free grammar is not enough, usually a

condition on the context is sometimes added

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Context-free and context-sensitive
grammars

•  It is easy to read and understand
•  Defines a superset of the language

•  Expresses restrictions imposed by
the language (e.g. variable must
be declared before use)

•  Makes the grammar rules context
sensitive

Context-free grammar
(e.g. with EBNF)

+

Set of extra conditions

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Examples
•  〈statement〉 ::= skip | 〈expression〉 ‘=‘ 〈expression〉 | …
•  〈expression〉 ::= 〈variable〉 | 〈integer〉 | …

•  〈statement〉 ::= if 〈expression〉 then 〈statement〉
 { elseif 〈expression〉 then 〈statement〉 }
 [else 〈statement〉] end | …

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Example: (Parse Trees)
•  if 〈expression〉 then 〈statement〉1 else 〈statement〉2 end

conditional

expression statement1 statement2

if then else

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Language Semantics
•  Semantics defines what a program does when it executes
•  Semantics should be simple and yet allows reasoning about

programs (correctness, execution time, and memory use)
•  How can this be achieved for a practical language that is

used to build complex systems (millions of lines of code)?
•  The kernel language approach

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Kernel Language Approach
•  Define a very simple language (kernel language)
•  Define the computation model of the kernel language
•  By defining how the constructs (statements) of the

language manipulate (create and transform) the data
structures (the entities) of the language

•  Define a mapping scheme (translation) of the full
programming language into the kernel language

•  Two kinds of translations: linguistic abstractions and
syntactic sugar

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Kernel Language Approach

Practical language

kernel language

Translation

fun {Sqr X} X*X end
B = {Sqr {Sqr A}}

proc {Sqr X Y}
 { * X X Y}
end
local T in
 {Sqr A T}
 {Sqr T B}
end

•  Provides useful abstractions
 for the programmer
•  Can be extended with linguistic
 abstractions

•  Is easy to understand and reason
 with
•  Has a precise (formal) semantics

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

Linguistic abstractions vs. syntactic
sugar

•  Linguistic abstractions, provide higher level concepts that
the programmer can use to model and reason about
programs (systems)

•  Examples: functions (fun), iterations (for), classes and
objects (class), mailboxes (receive)

•  The functions (calls) are translated to procedures (calls)
•  The translation answers questions about the function call:

 {F1 {F2 X} {F3 X}}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

Linguistic abstractions vs. syntactic
sugar

•  Linguistic abstractions, provide higher
level concepts that the programmer can
use to model and reason about programs
(systems)

•  Syntactic sugar are short cuts and
conveniences to improve readability

if N==1 then [1]
else
 local L in
 …
 end
end

if N==1 then [1]
else L in
 …
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

Approaches to semantics

Programming Language

Kernel Language

Operational model

Formal calculus Abstract machine

Aid the programmer
in reasoning and
understanding

Mathematical study of
programming (languages)
λ-calculus, predicate calculus,
π-calculus

Aid to the implementer
Efficient execution on
a real machine

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

Exercises
35. Write a valid EBNF grammar for lists of non-negative

integers in Oz.
36. Write a valid EBNF grammar for the λ-calculus.

•  Which are terminal and which are non-terminal symbols?
•  Draw the parse tree for the expression:

((λx.x λy.y) λz.z)
37. The grammar

 <exp> ::= <int> | <exp> <op> <exp>
 <op> ::= + | *

 is ambiguous (e.g., it can produce two parse trees for the
expression 2*3+4). Rewrite the grammar so that it
accepts the same language unambiguously.

