
C. Varela 1

Concurrent Programming with
SALSA (PDCS 9)

Actors, Coordination Abstractions:
Tokens, Join Blocks, First-Class Continuations

Carlos Varela

Rensselaer Polytechnic Institute

April 20, 2015

C. Varela 2

Actors/SALSA
•  Actor Model

–  A reasoning framework to model concurrent
computations

–  Programming abstractions for distributed open
systems

G. Agha, Actors: A Model of Concurrent Computation in Distributed

Systems. MIT Press, 1986.

•  SALSA
–  Simple Actor Language System and

Architecture
–  An actor-oriented language for mobile and

internet computing
–  Programming abstractions for internet-based

concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA
2001, 36(12), pp 20-34.

C. Varela 3

SALSA and Java

•  SALSA source files are compiled into Java source files before being compiled into
Java byte code.

•  SALSA programs may take full advantage of the Java API.

C. Varela 4

Hello World Example

module helloworld;

behavior HelloWorld {

 void act(String[] args) {

 standardOutput <- print("Hello") @
 standardOutput <- println("World!");

 }

}

C. Varela 5

Hello World Example

•  The act(String[] args) message handler is
similar to the main(…) method in Java and is used to
bootstrap SALSA programs.

•  When a SALSA program is executed, an actor of the given
behavior is created and an act(args) message is sent to
this actor with any given command-line arguments.

•  References to standardOutput, standardInput
and standardError actors are available to all SALSA
actors.

C. Varela 6

SALSA Support for Actors

•  Programmers define behaviors for actors.

•  Messages are sent asynchronously.

•  State is modeled as encapsulated objects/primitive types.

•  Messages are modeled as potential method invocations.

•  Continuation primitives are used for coordination.

C. Varela 7

Reference Cell Example

module cell;

behavior Cell {
 Object content;

 Cell(Object initialContent) {

 content = initialContent;
 }

 Object get() { return content; }

 void set(Object newContent) {
 content = newContent;
 }

}

C. Varela 8

Actor Creation

•  To create an actor:

 TravelAgent a = new TravelAgent();

C. Varela 9

Message Sending

•  To create an actor:

TravelAgent a = new TravelAgent();

•  To send a message:

a <- book(flight);

C. Varela 10

Causal order
•  In a sequential program all execution states are totally

ordered

•  In a concurrent program all execution states of a given actor
are totally ordered

•  The execution state of the concurrent program as a whole is
partially ordered

C. Varela 11

Total order
•  In a sequential program all execution states are totally

ordered

computation step

sequential
execution

C. Varela 12

Causal order in the actor model

•  In a concurrent program all execution states of a given
actor are totally ordered

•  The execution state of the concurrent program is partially
ordered

computation step

actor A1

actor A2

actor A3

Create new
actor

Send a
message

C. Varela 13

Nondeterminism

•  An execution is nondeterministic if there is a computation
step in which there is a choice what to do next

•  Nondeterminism appears naturally when there is
asynchronous message passing
–  Messages can arrive or be processed in an order different from the

sending order.

C. Varela 14

Example of nondeterminism

time

Actor 1

a<-m1();

time

Actor 2

Actor a can receive messages m1() and m2() in any order.

a<-m2();

time

Actor a

C. Varela 15

Coordination Primitives

•  SALSA provides three main coordination constructs:
–  Token-passing continuations

•  To synchronize concurrent activities
•  To notify completion of message processing
•  Named tokens enable arbitrary synchronization (data-flow)

–  Join blocks
•  Used for barrier synchronization for multiple concurrent

activities
•  To obtain results from otherwise independent concurrent

processes
–  First-class continuations

•  To delegate producing a result to a third-party actor

C. Varela 16

Token Passing Continuations
•  Ensures that each message in the continuation expression is sent after

the previous message has been processed. It also enables the use of a
message handler return value as an argument for a later message
(through the token keyword).

–  Example:

a1 <- m1() @
a2 <- m2(token);

Send m1 to a1 asking a1 to forward the result of processing m1 to a2
(as the argument of message m2).

C. Varela 17

Named Tokens
•  Tokens can be named to enable more loosely-

coupled synchronization

–  Example:

token t1 = a1 <- m1();
token t2 = a2 <- m2();
token t3 = a3 <- m3(t1);
token t4 = a4 <- m4(t2);
a <- m(t1,t2,t3,t4);

Sending m(…) to a will be delayed until
messages m1()..m4() have been
processed. m1() can proceed
concurrently with m2().

C. Varela 18

Causal order in the actor model

computation step

actor A1

actor A2

actor A3

create new
actor

bind a token

synchronize on a token

x

y

C. Varela 19

Cell Tester Example

module cell;

behavior CellTester {

 void act(String[] args) {

 Cell c = new Cell(“Hello”);
 standardOutput <- print(”Initial Value:”) @
 c <- get() @
 standardOutput <- println(token) @
 c <- set(“World”) @
 standardOutput <- print(”New Value:”) @
 c <- get() @
 standardOutput <- println(token);

 }
}

C. Varela 20

Cell Tester Example with Named
Tokens

module cell;

behavior TokenCellTester {

 void act(String args[]){

 Cell c = new Cell("Hello");
 token p0 = standardOutput <- print("Initial Value:");
 token t0 = c <- get();
 token p1 = standardOutput <- println(t0):waitfor(p0);
 token t1 = c <- set("World"):waitfor(t0);
 token p2 = standardOutput <- print("New Value:"):waitfor(p1);
 token t2 = c <- get():waitfor(t1);
 standardOutput <- println(t2):waitfor(p2);
 }

}

C. Varela 21

Join Blocks

•  Provide a mechanism for synchronizing the processing of a set of
messages.

•  Set of results is sent along as a token containing an array of results.
–  Example:

Actor[] actors = { searcher0, searcher1,
 searcher2, searcher3 };

join {
 for (int i=0; i < actors.length; i++){
 actors[i] <- find(phrase);
 }
} @ resultActor <- output(token);

Send the find(phrase) message to each actor in actors[] then after all

have completed send the result to resultActor as the argument of an
output(…) message.

C. Varela 22

Example: Acknowledged
Multicast

join{ a1 <- m1(); a2 <- m2(); … an <- mn(); } @
 cust <- n(token);

C. Varela 23

Lines of Code Comparison

31 100 168 Acknowledged Multicast

SALSA Foundry Java

C. Varela 24

First Class Continuations

•  Enable actors to delegate computation to a third party independently of
the processing context.

•  For example:

 int m(…){
 b <- n(…) @ currentContinuation;

 }
Ask (delegate) actor b to respond to this message m on behalf of current actor

(self) by processing its own message n.

C. Varela 25

Delegate Example

module fibonacci;

behavior Calculator {

 int fib(int n) {
 Fibonacci f = new Fibonacci(n);
 f <- compute() @ currentContinuation;
 }
 int add(int n1, int n2) {return n1+n2;}

 void act(String args[]) {
 fib(15) @ standardOutput <- println(token);
 fib(5) @ add(token,3) @
 standardOutput <- println(token);
 }

}

C. Varela 26

Fibonacci Example
module fibonacci;

behavior Fibonacci {

 int n;

 Fibonacci(int n) { this.n = n; }

 int add(int x, int y) { return x + y; }

 int compute() {
 if (n == 0) return 0;
 else if (n <= 2) return 1;
 else {
 Fibonacci fib1 = new Fibonacci(n-1);
 Fibonacci fib2 = new Fibonacci(n-2);
 token x = fib1<-compute();
 token y = fib2<-compute();
 add(x,y) @ currentContinuation;
 }
 }

 void act(String args[]) {
 n = Integer.parseInt(args[0]);
 compute() @ standardOutput<-println(token);
 }

}

C. Varela 27

Fibonacci Example 2
module fibonacci2;

behavior Fibonacci {

 int add(int x, int y) { return x + y; }

 int compute(int n) {
 if (n == 0) return 0;
 else if (n <= 2) return 1;
 else {
 Fibonacci fib = new Fibonacci();
 token x = fib <- compute(n-1);
 compute(n-2) @ add(x,token) @ currentContinuation;
 }
 }

 void act(String args[]) {
 int n = Integer.parseInt(args[0]);
 compute(n) @ standardOutput<-println(token);
 }

}

C. Varela 28

Execution of
salsa Fibonacci 6

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1 F3

F2

Create new actor

Synchronize on
result

Non-blocked actor

C. Varela 29

Exercises

74. Download and execute the CellTester.salsa and
TokenCellTester.salsa examples.

75. Write a solution to the Flavius Josephus problem in
SALSA. A description of the problem is at CTM Section
7.8.3 (page 558).

76. PDCS Exercise 9.6.1 (page 203).

77. PDCS Exercise 9.6.6 (page 204).

