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Actors/SALSA 
•  Actor Model  

–  A reasoning framework to model concurrent 
computations  

–  Programming abstractions for distributed open 
systems 

 
G. Agha, Actors: A Model of Concurrent Computation in Distributed 

Systems. MIT Press, 1986. 

•  SALSA 
–  Simple Actor Language System and 

Architecture 
–  An actor-oriented language for mobile and 

internet computing 
–  Programming abstractions for internet-based 

concurrency, distribution, mobility, and 
coordination 

C. Varela and G. Agha, “Programming dynamically reconfigurable 
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA 
2001, 36(12), pp 20-34. 
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SALSA and Java 

•  SALSA source files are compiled into Java source files before being compiled into 
Java byte code. 

•  SALSA programs may take full advantage of the Java API. 
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Hello World Example 
 
 
 
 
 

module helloworld; 
 
behavior HelloWorld { 
 
   void act( String[] args ) { 
       
      standardOutput <- print( "Hello" ) @ 
      standardOutput <- println( "World!" ); 
 
   } 
 
} 
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Hello World Example 

•  The act( String[] args ) message handler is 
similar to the main(…) method in Java and is used to 
bootstrap SALSA programs. 

•  When a SALSA program is executed, an actor of the given 
behavior is created and an act(args) message is sent to 
this actor with any given command-line arguments. 

•  References to standardOutput, standardInput 
and standardError actors are available to all SALSA 
actors. 
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SALSA Support for Actors 
 
•  Programmers define behaviors for actors. 

•  Messages are sent asynchronously. 

•  State is modeled as encapsulated objects/primitive types. 

•  Messages are modeled as potential method invocations. 

•  Continuation primitives are used for coordination. 
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Reference Cell Example 

module cell; 
 
behavior Cell { 
 Object content; 
  
 Cell(Object initialContent) {  

         content = initialContent;  
   } 
  
 Object get() { return content; } 
  
 void set(Object newContent) { 
  content = newContent; 
 } 

} 
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Actor Creation 

•  To create an actor: 
 

   TravelAgent a = new TravelAgent(); 
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Message Sending 
 
•  To create an actor: 

 
TravelAgent a = new TravelAgent(); 

 

•  To send a message: 
 

a <- book( flight ); 
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Causal order 
•  In a sequential program all execution  states are totally 

ordered 

•  In a concurrent program all execution states of a given actor 
are totally ordered 

•  The execution state of the concurrent program as a whole is 
partially ordered 
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Total order 
•  In a sequential program all execution  states are totally 

ordered 

computation step 

sequential 
execution 
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Causal order in the actor model 

•  In a concurrent program all execution states of a given 
actor are totally ordered 

•  The execution state of the concurrent program is partially 
ordered 

computation step 

actor A1 

actor A2 

actor A3 

Create new 
actor 

Send a 
message 
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Nondeterminism 

•  An execution is nondeterministic if there is a computation 
step in which there is a choice what to do next 

•  Nondeterminism appears naturally when there is 
asynchronous message passing 
–  Messages can arrive or be processed in an order different from the 

sending order. 
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Example of nondeterminism 

time 

Actor 1 

a<-m1(); 

time 

Actor 2 

Actor a can receive messages m1() and m2() in any order. 

a<-m2(); 

time 

Actor a 
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Coordination Primitives 

•  SALSA provides three main coordination constructs: 
–  Token-passing continuations 

•  To synchronize concurrent activities 
•  To notify completion of message processing 
•  Named tokens enable arbitrary synchronization (data-flow) 

–  Join blocks 
•  Used for barrier synchronization for multiple concurrent 

activities 
•  To obtain results from otherwise independent concurrent 

processes 
–  First-class continuations 

•  To delegate producing a result to a third-party actor 
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Token Passing Continuations 
•  Ensures that each message in the continuation expression is sent after 

the previous message has been processed. It also enables the use of a 
message handler return value as an argument for a later message 
(through the token keyword). 

–  Example: 

a1 <- m1() @  
a2 <- m2( token ); 
 

Send m1 to a1 asking a1 to forward the result of processing m1 to a2 
(as the argument of message m2). 
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Named Tokens 
•  Tokens can be named to enable more loosely-

coupled synchronization 

–  Example: 

token t1 = a1 <- m1();  
token t2 = a2 <- m2(); 
token t3 = a3 <- m3( t1 );  
token t4 = a4 <- m4( t2 ); 
a <- m(t1,t2,t3,t4); 
 

Sending m(…) to a will be delayed until 
messages m1()..m4()  have been 
processed.   m1() can proceed 
concurrently with m2(). 
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Causal order in the actor model 

computation step 

actor A1 

actor A2 

actor A3 

create new 
actor 

bind a token 

synchronize on a token 

x 

y 
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Cell Tester Example 

module cell; 
 
behavior CellTester { 
 

 void act( String[] args ) { 
       

  Cell c = new Cell(“Hello”); 
  standardOutput <- print( ”Initial Value:” ) @ 
  c <- get() @ 
  standardOutput <- println( token ) @ 
  c <- set(“World”) @ 
  standardOutput <- print( ”New Value:” ) @ 
  c <- get() @ 
  standardOutput <- println( token ); 

 
   } 
} 
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Cell Tester Example with Named 
Tokens 

module cell; 
 
behavior TokenCellTester { 
 

 void act(String args[]){ 
 

  Cell c = new Cell("Hello"); 
  token p0 = standardOutput <- print("Initial Value:"); 
  token t0 = c <- get(); 
  token p1 = standardOutput <- println(t0):waitfor(p0); 
  token t1 = c <- set("World"):waitfor(t0); 
  token p2 = standardOutput <- print("New Value:"):waitfor(p1); 
  token t2 = c <- get():waitfor(t1); 
  standardOutput <- println(t2):waitfor(p2);  
 } 

} 
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Join Blocks 

•  Provide a mechanism for synchronizing the processing of a set of 
messages. 

•  Set of results is sent along as a token containing an array of results. 
–  Example: 

Actor[] actors = { searcher0, searcher1,     
   searcher2, searcher3 }; 

join {  
 for (int i=0; i < actors.length; i++){ 
     actors[i] <- find( phrase ); 
  } 
} @ resultActor <- output( token ); 
 
Send the find( phrase ) message to each actor in actors[] then after all 

have completed send the result to resultActor as the argument of an 
output( … ) message. 
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Example: Acknowledged 
Multicast 

join{ a1 <- m1(); a2 <- m2(); … an <- mn(); } @  
 cust <- n(token); 
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Lines of Code Comparison 

31 100 168 Acknowledged Multicast 

SALSA Foundry Java 
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First Class Continuations 

•  Enable actors to delegate computation to a third party independently of 
the processing context. 

•  For example: 
 
  int m(…){ 
    b <- n(…) @ currentContinuation; 

  } 
Ask (delegate) actor b to respond to this message m on behalf of current actor 

(self) by processing its own message n. 
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Delegate Example 

module fibonacci; 
 
behavior Calculator { 
   
 int fib(int n) {  
  Fibonacci f = new Fibonacci(n); 
  f <- compute() @ currentContinuation; 
 } 
 int add(int n1, int n2) {return n1+n2;}  
  
 void act(String args[]) { 
  fib(15) @ standardOutput <- println(token); 
  fib(5) @ add(token,3) @ 
  standardOutput <- println(token); 
 } 

} 
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Fibonacci Example 
module fibonacci; 
 
behavior Fibonacci { 

 int n; 
  
 Fibonacci(int n)  { this.n = n; } 
  
 int add(int x, int y) { return x + y; } 
  
 int compute() { 
  if (n == 0)  return 0; 
  else if (n <= 2)  return 1; 
  else { 
   Fibonacci fib1 = new Fibonacci(n-1); 
   Fibonacci fib2 = new Fibonacci(n-2); 
   token x = fib1<-compute();  
   token y = fib2<-compute(); 
   add(x,y) @ currentContinuation; 
  } 
 } 
  
 void act(String args[]) { 
  n = Integer.parseInt(args[0]); 
  compute() @ standardOutput<-println(token); 
 } 

} 



C. Varela 27 

Fibonacci Example 2 
module fibonacci2; 
 
behavior Fibonacci { 

   
 int add(int x, int y) { return x + y; } 
  
 int compute(int n) { 
  if (n == 0)  return 0; 
  else if (n <= 2) return 1; 
  else { 
   Fibonacci fib = new Fibonacci(); 
   token x = fib <- compute(n-1);  
   compute(n-2) @ add(x,token) @ currentContinuation; 
  } 
 } 
  
 void act(String args[]) { 
  int n = Integer.parseInt(args[0]); 
  compute(n) @ standardOutput<-println(token); 
 } 

} 
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Execution of  
salsa Fibonacci 6 
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Exercises 

74. Download and execute the CellTester.salsa and 
TokenCellTester.salsa examples. 

75. Write a solution to the Flavius Josephus problem in 
SALSA.  A description of the problem is at CTM Section 
7.8.3 (page 558). 

76. PDCS Exercise 9.6.1 (page 203). 

77. PDCS Exercise 9.6.6 (page 204). 

 


