
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Computation Model
 Single assignment store (CTM 2.2)
Kernel language syntax (CTM 2.3)

Carlos Varela
RPI

March 5, 2015

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Sequential declarative computation
model

•  The single assignment store
–  declarative (dataflow) variables
–  partial values (variables and values are also called entities)

•  The kernel language syntax
•  The kernel language semantics

–  The environment: maps textual variable names (variable
identifiers) into entities in the store

–  Interpretation (execution) of the kernel language elements
(statements) by the use of an abstract machine

–  Abstract machine consists of an execution stack of statements
transforming the store

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

Single assignment store

•  A single assignment store is a
store (set) of variables

•  Initially the variables are
unbound, i.e. do not have a
defined value

•  Example: a store with three
variables, x1, x2, and x3

unbound

The Store

x1

unbound x2

unbound x3

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

Single assignment store (2)

•  Variables in the store may be
bound to values

•  Example: assume we allow as
values, integers and lists of
integers

unbound

The Store

x1

unbound x2

unbound x3

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Single assignment store (3)

•  Variables in the store may be
bound to values

•  Assume we allow as values,
integers and lists of integers

•  Example: x1 is bound to the
integer 314, x2 is bound to the
list [1 2 3], and x3 is still
unbound

The Store

x1

x2

unbound x3

314

1 | 2 | 3 | nil

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

Declarative (single-assignment)
variables

•  A declarative variable starts out
as being unbound when created

•  It can be bound to exactly one
value

•  Once bound it stays bound
through the computation, and is
indistinguishable from its value

The Store

x1

x2

unbound x3

314

1 | 2 | 3 | nil

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

Value store
•  A store where all variables are

bound to values is called a value
store

•  Example: a value store where x1 is
bound to integer 314,
x2 to the list [1 2 3],
and x3 to the record (labeled tree)
person(name: “George” age: 25)

•  Functional programming computes
functions on values, needs only a
value store

•  This notion of value store is enough
for functional programming (ML,
Haskell, Scheme)

314

1 | 2 | 3 | nil

person

“George” 25

name age

The Store

x1

x2

x3

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

Operations on the store (1)
Single assignment

〈x〉 = 〈v〉
•  x1 = 314
•  x2 = [1 2 3]
•  This assumes that 〈x〉 is unbound

unbound

The Store

x1

unbound x2

unbound x3

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

Single-assignment

〈x〉 = 〈value〉
•  x1 = 314
•  x2 = [1 2 3]

314

The Store

x1

unbound x2

unbound x3

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Single-assignment (2)

〈x〉 = 〈v〉
•  x1 = 314
•  x2 = [1 2 3]
•  The single assignment operation

(‘=‘) constructs the 〈v〉 in the
store and binds the variable 〈x〉
to this value

•  If the variable is already bound,
the operation will test the
compatibility of the two values

•  If the test fails an error is raised

314

The Store

x1

x2

unbound x3

1 | 2 | 3 | nil

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Variable identifiers

•  Variable identifiers refers to
store entities (variables or
values)

•  The environment maps variable
identifiers to variables

•  declare X
 :

•  local X in …
•  ”X” is a (variable) identifier
•  This corresponds to

’environment’ {”X” → x1}

The Store

”X” Unbound x1

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Variable-value binding revisited (1)

The Store

“X” x1

•  X = [1 2 3]
•  Once bound the variable is

indistinguishable from its
value

1 | 2 | 3 | nil

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Variable-value binding revisited (2)

The Store

“X” x1

•  X = [1 2 3]
•  Once bound the variable is

indistinguishable from its
value

•  The operation of traversing
variable cells to get the value
is known as dereferencing
and is invisible to the
programmer

1 | 2 | 3 | nil

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Partial Values

•  A partial value is a data structure
that may contain unbound
variables

•  The store contains the partial
value: person(name: “George” age: x2)

•  declare Y X
X = person(name: “George” age: Y)

•  The identifier ’Y’ refers to x2

person

“George” Unbound

name age

The Store

“X”

“Y”

x1

x2

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Partial Values (2)

Partial Values may be complete
•  declare Y X

X = person(name: “George” age: Y)
•  Y = 25

person

“George” 25

name age

The Store

“X”

“Y”

x1

x2

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Variable to variable binding

〈x1〉 = 〈x2〉
•  It is to perform the bind operation

between variables
•  Example:
•  X = Y
•  X = [1 2 3]
•  The operations equates (merges)

the two variables

unbound

The Store

x1

unbound x2

X

Y

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

Variable to variable binding (2)

〈x1〉 = 〈x2〉
•  It is to perform a single assignment

between variables
•  Example:
•  X = Y
•  X = [1 2 3]
•  The operations equates the two

variables (forming an equivalence
class)

The Store

x1

 x2

X

Y

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

Variable to variable binding (3)

〈x1〉 = 〈x2〉
•  It is to perform a single assignment

between variables
•  Example:
•  X = Y
•  X = [1 2 3]
•  All variables (X and Y) are bound

to [1 2 3]

The Store

x1

 x2

X

Y

1 | 2 | 3 | nil

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

Summary
Variables and partial values

•  Declarative variable:
–  is an entity that resides in a single-assignment store, that is initially

unbound, and can be bound to exactly one (partial) value
–  it can be bound to several (partial) values as long as they are

compatible with each other

•  Partial value:
–  is a data-structure that may contain unbound variables
–  when one of the variables is bound, it is replaced by the (partial)

value it is bound to
–  a complete value, or value for short is a data structure that does not

contain any unbound variables

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

Declaration and use of variables
•  Assume that variables can be declared (introduced) and used

separately
•  What happens if we try to use a variable before it is bound?
1.  Use whatever value happens to be in the memory cell

occupied by the variable (C, C++)
2.  The variable is initialized to a default value (Java, SALSA),

use the default
3.  An error is signaled (Prolog). Makes sense if there is a single

activity running (pure sequential programs)
4.  An attempt to use the variable will wait (suspends) until

another activity binds the variable (Oz/Mozart)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

Declaration and use of variables (2)
•  An attempt to use the variable will wait (suspends) until

another activity binds the variable (Oz/Mozart)
•  Declarative (single assignment) variables that have this

property are called dataflow variables
•  It allows multiple operations to proceed concurrently giving

the correct result
•  Example: A = 23 running concurrently with B = A+1
•  Functional (concurrent) languages do not allow the

separation between declaration and binding (ML, Haskell,
and Erlang)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 22

Kernel language syntax

〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

 | 〈x〉 = 〈v〉 variable-value binding
 | 〈s1〉 〈s2〉 sequential composition
 | local 〈x〉 in 〈s1〉 end declaration
 | if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
 | ‘{’ 〈x〉 〈y1〉 … 〈yn〉 ‘}’ procedural application
 | case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching

〈v〉 ::= ... value expression

〈pattern〉 ::= ...

The following defines the syntax of a statement, 〈s〉 denotes a statement

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Variable identifiers
•  〈x〉 , 〈y〉, 〈z〉 stand for variables
•  In the concrete kernel language variables begin with upper-

case letter followed by a (possibly empty) sequence of
alphanumeric characters or underscore

•  Any sequence of printable characters within back-quote
•  Examples:

–  X
–  Y1
–  Hello_World
–  `hello this is a $5 bill` (back-quote)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 24

Values and types
•  A data type is a set of values and a set of associated

operations
•  Example: Int is the the data type ”Integer”, i.e set of all

integer values
•  1 is of type Int
•  Int has a set of operations including +,-,*,div, etc
•  The model comes with a set of basic types
•  Programs can define other types, e.g., abstract data types

ADT

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 25

Data types
Value

Number

Literal

Record Procedure

Int Float

Atom Boolean

true false

Char

Tuple

List

String

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 26

Data types (2)
Value

Number

Literal

Record Procedure

Int Float

Atom Boolean

true false

Char

Tuple

List

String

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 27

Value expressions
〈v〉 ::= 〈procedure〉 | 〈record〉 | 〈number〉

〈procedure〉 ::= proc ‘{‘$ 〈y1〉 … 〈yn〉’}’ 〈s〉 end

〈record〉, 〈pattern〉 ::= 〈literal〉

 | 〈literal〉 ([〈feature1〉 : 〈x1〉 … 〈featuren〉 : 〈xn〉])

〈literal〉 ::= 〈atom〉 | 〈bool〉
〈feature〉 ::= 〈int〉 | 〈atom〉 | 〈bool〉

〈bool〉 ::= true | false

〈number〉 ::= 〈int〉 | 〈float〉

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 28

Numbers
•  Integers

–  314, 0
–  ~10 (minus 10)

•  Floats
–  1.0, 3.4, 2.0e2, 2.0E2 (2×102)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 29

Atoms and booleans
•  A sequence starting with a lower-case character followed

by characters or digits, …
–  person, peter
–  ‘Seif Haridi’

•  Booleans:
–  true
–  false

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 30

Records
•  Compound representation (data-structures)

–  〈l〉(〈f1〉 : 〈x1〉 … 〈fn〉 : 〈xn〉)
–  〈l〉 is a literal

•  Examples
–  person(age:X1 name:X2)
–  person(1:X1 2:X2)
–  ‘|’(1:H 2:T)
–  nil
–  person

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 31

Syntactic sugar (tuples)
•  Tuples

 〈l〉(〈x1〉 … 〈xn〉) (tuple)
•  This is equivalent to the record

 〈l〉(1: 〈x1〉 … n: 〈xn〉)

•  Example:
 person(‘George’ 25)

•  This is the record
 person(1:‘George’ 2:25)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 32

Syntactic sugar (lists)
•  Lists

 〈x1〉 | 〈x2〉 (a cons with the infix operator ‘|’)
•  This is equivalent to the tuple

 ‘|’(〈x1〉 〈x2〉)

•  Example:
 H | T

•  This is the tuple
 ‘|’(H T)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 33

Syntactic sugar (lists)
•  Lists

 〈x1〉 | 〈x2〉 | 〈x3〉
•  ‘|’ associates to the right

 〈x1〉 | (〈x2〉 | 〈x3〉)

•  Example:

 1 | 2 | 3 | nil
•  Is

 1 | (2 | (3 | nil))

‘|’

‘|’

‘|’

1

2

3 nil

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 34

Syntactic sugar (complete lists)
•  Complete lists
•  Example:

 [1 2 3]
•  Is

 1 | (2 | (3 | nil))

‘|’

‘|’

‘|’

1

2

3 nil

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 35

Strings
•  A string is a list of character codes enclosed with double

quotes
•  Ex: ”E=mc^2”
•  Means the same as [69 61 109 99 94 50]

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 36

Procedure declarations
•  According to the kernel language

 〈x〉 = proc {$ 〈y1〉 … 〈yn〉} 〈s〉 end
is a legal statement

•  It binds 〈x〉 to a procedure value
•  This statement actually declares (introduces) a procedure
•  Another syntactic variant which is more familiar is

 proc {〈x〉 〈y1〉 … 〈yn〉} 〈s〉 end
•  This introduces (declares) the procedure 〈x〉

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 37

Operations of basic types
•  Arithmetics

–  Floating point numbers: +,-,*, and /
–  Integers: +,-,*,div (integer division, i.e. truncate fractional part),

mod (the remainder after a division, e.g.10 mod 3 = 1)

•  Record operations
–  Arity, Label, and ”.”
–  X = person(name:”George” age:25)
–  {Arity X} = [age name]
–  {Label X} = person, X.age = 25

•  Comparisons
–  Boolean comparisons, including ==, \= (equality)
–  Numeric comparisons, =<, <, >, >=, compares integers, floats, and

atoms

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 38

Value expressions
〈v〉 ::= 〈procedure〉 | 〈record〉 | 〈number〉 | 〈basicExpr〉

〈basicExpr〉 ::= ... | 〈numberExpr〉 | ...

〈numberExpr〉 ::= 〈x〉1 + 〈x〉2 | ...

.....

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 39

Syntactic sugar (multiple variables)

•  Multiple variable introduction

 local X Y in 〈statement〉 end

•  is transformed to

 local X in
 local Y in 〈statement〉 end
 end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 40

Syntactic sugar (basic expressions)

•  Basic expression nesting

 if 〈basicExpr〉 then 〈statement〉1 else 〈statement〉2 end

•  is transformed to

local T in
 T = 〈basicExpr〉
 if T then 〈statement〉1 else 〈statement〉2 end

end
•  where T is a fresh (’new’) variable identifier

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 41

Syntactic sugar (variables)
•  Variable initialization

 local X = 〈value〉 in 〈statement〉 end

•  Is transformed to

 local X in
 X = 〈value〉
 〈statement〉
 end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 42

Exercises
38. Using Oz, perform a few basic operations on numbers,

records, and booleans (see Appendix B1-B3)
39. Explain the behavior of the declare statement in the

interactive environment. Give an example of an
interactive Oz session where “declare” and
“declare … in” produce different results. Explain
why.

40. CTM Exercise 2.9.1
41. Describe what an anonymous procedure is, and write one

in Oz. When are anonymous procedures useful?

