Declarative Computation Model

Single assignment store (CTM 2.2)
Kernel language syntax (CTM 2.3)

Carlos Varela
RPI

March 5, 2015

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Sequential declarative computation
model

» The single assignment store
— declarative (dataflow) variables
— partial values (variables and values are also called entities)

e The kernel language syntax
e The kernel language semantics

— The environment: maps textual variable names (variable
1dentifiers) into entities in the store

— Interpretation (execution) of the kernel language elements
(statements) by the use of an abstract machine

— Abstract machine consists of an execution stack of statements
transforming the store

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Single assignment store

The Store

* A single assignment store 1s a
store (set) of variables x; | unbound

* Initially the variables are
unbound, 1.e. do not have a

defined value X, |unbound

« Example: a store with three
variables, x,, x,, and x;

X5 unbound

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Single assignment store (2)

The Store
* Variables in the store may be
bound to values x; | unbound
* Example: assume we allow as
values, integers and lists of
integers X, [unbound

X5 unbound

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Single assignment store (3)

Variables in the store may be
bound to values

Assume we allow as values,
integers and lists of integers

Example: x, 1s bound to the
integer 314, x, is bound to the
list [1 2 3], and x; s still
unbound

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

The Store
X, 314
X, 1] 2 | 3 | nil

X5 unbound

Declarative (single-assignment)

variables
* A declarative variable starts out The Store
as being unbound when created
[t can be bound to exactly one x| 314
value
* Once bound it stays bound x, 1] 2| 3| ni

through the computation, and is
indistinguishable from its value

X5 unbound

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Value store

A store where all variables are
bound to values is called a value
store

Example: a value store where x;, 1s
bound to integer 314,

x, to the list [1 2 3],

and x; to the record (labeled tree)
person(name: “George” age: 25)

Functional programming computes
functions on values, needs only a
value store

This notion of value store 1s enough

for functional programming (ML,
Haskell, Scheme)

The Store
x; 314
x, |11 2 | 3 | nil
X3 person
name age
“George” 25

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Operations on the store (1)
Single assignment

The Store
(x)=v)
e x,=314 X, |unbound
. x,=[123
This assumes that (x) is unbound X, | unbound

X5 unbound

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Single-assignment

The Store

(x) = (value)
. x;=314 x| 314

Xy unbound

X5 unbound

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Single-assignment (2)

<X> <V>
=314
* x,=[123]

» The single assignment operation
(‘=") constructs the (v) in the
store and binds the variable (x)
to this value

« If the variable 1s already bound,
the operation will test the
compatibility of the two values

e Ifthe test fails an error is raised

The Store
X, 314
Xy 1] 2 | 3 | nil
X5 unbound

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

10

Variable 1dentifiers

Variable 1dentifiers refers to The Store

store entities (variables or
values)

The environment maps variable
identifiers to variables

declare X
: ”X” xl

local Xin ...

"X" 1s a (variable) identifier

This corresponds to
‘environment’ {"X” — x, }

Unbound

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

11

Variable-value binding revisited (1)

X=[123]

Once bound the variable 1s
indistinguishable from its

value

The Store
13 ”
X Xi| s
1] 2] 3| ni
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Variable-value binding revisited (2)

X=[123]

Once bound the variable is
indistinguishable from its
value

The operation of traversing
variable cells to get the value

1s known as dereferencing “X”
and 1s invisible to the

programmer

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

The Store

1]

2|

3 | nil

13

Partial Values

A partial value 1s a data structure
that may contain unbound
variables

The store contains the partial

value: person(name: “George” age: x,) —
declare Y X X
X = person(name: “George” age: Y)

The identifier *Y’ refers to x,

“Y”

The Store
X, | Person
name age
“George” Unbound
X2
14

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Partial Values may be complete

declare Y X

X = person(name: “George” age: Y)

Y=25

Partial Values (2)

The Store

X, Pperson
1 ”
X
name age
George X, 25
11 ”
Y

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

15

Variable to variable binding

(x 1> (x2> The Store

It 1s to perform the bind operation
between variables

« Example: X > x, | unbound
e X=Y

> X, unbound

« The operations equates (merges)Y
the two variables

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Variable to variable binding (2)

(x 1> (x2> The Store

It 1s to perform a single assignment
between variables

« Example: ¢ -
e X=Y

e X=[123]

« The operations equates the two Y " X2

variables (forming an equivalence
class)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Variable to variable binding (3)

The Store

(x) = (x)

[t 1s to perform a single as51gnmentX
between variables

3 [

« Example: i 2] 3|l
Y T X
« X=[123]
e All variables (X and Y) are bound
to [1 2 3]

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

Summary
Variables and partial values

Declarative variable:

— 1s an entity that resides in a single-assignment store, that is initially
unbound, and can be bound to exactly one (partial) value

— it can be bound to several (partial) values as long as they are
compatible with each other
Partial value:
— 1s a data-structure that may contain unbound variables

— when one of the variables 1s bound, it 1s replaced by the (partial)
value 1t 1s bound to

— a complete value, or value for short 1s a data structure that does not
contain any unbound variables

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

Declaration and use of variables

Assume that variables can be declared (introduced) and used
separately

What happens 1f we try to use a variable before it 1s bound?

. Use whatever value happens to be in the memory cell
occupied by the variable (C, C++)

. The variable 1s 1nitialized to a default value (Java, SALSA),
use the default

. An error 1s signaled (Prolog). Makes sense if there 1s a single
activity running (pure sequential programs)

. An attempt to use the variable will wait (suspends) until
another activity binds the variable (Oz/Mozart)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

Declaration and use of variables (2)

* An attempt to use the variable will wait (suspends) until
another activity binds the variable (Oz/Mozart)

« Declarative (single assignment) variables that have this
property are called dataflow variables

« It allows multiple operations to proceed concurrently giving
the correct result

« Example: A = 23 running concurrently with B = A+1

* Functional (concurrent) languages do not allow the
separation between declaration and binding (ML, Haskell,
and Erlang)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

Kernel language syntax

The following defines the syntax of a statement, (S) denotes a statement

(s) = skip empty statement
(X) =(y) variable-variable binding
(X) = (V) variable-value binding
(S) (Sy) sequential composition
local {x) in (s,) end declaration
if (x) then (s,) else (s,) end conditional
Uy yy Y procedural application
case (x) of (pattern) then (s,) else (s,) end pattern matching

value expression

(V)

(pattern) = ...

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 22

Variable identifiers

(x), {(¥), (z) stand for variables

In the concrete kernel language variables begin with upper-
case letter followed by a (possibly empty) sequence of
alphanumeric characters or underscore

Any sequence of printable characters within back-quote
Examples:

- X

- Y1

— Hello_World

— “hello this is a $5 bill" (back-quote)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Values and types

A data type 1s a set of values and a set of associated
operations

Example: Int is the the data type “Integer”, 1.e set of all
integer values

1 is of type Int
Int has a set of operations including +,-,*,div, etc
The model comes with a set of basic types

Programs can define other types, e.g., abstract data types
ADT

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

24

Data types

Value
Number Record Procedure

VAN

Int Float /\

l Literal List
Char /\
Atom Boolean
— String
true false

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

25

Data types (2)

Value

e

Number

/\

Record

Int Float

1

Tuple

Literal

Char

N

Procedure

Atom

Boolean

o T

List

|

String

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

26

Value expressions

(v) = (procedure) | (record) | (number)

(procedure)

z=proc " (yy) ... ()} () end

(record), (pattern) = (literal)

| (literal) ([(feature,) : (x,) ... {feature) : (x.)])

(literal) ::= (atom) | (bool)
(feature) = (int) | (atom) | (bool)
(bool) :=true| false

(number) ::=(int) | (float)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

27

Numbers

* Integers
- 314,0
— ~10 (minus 10)
* Floats
- 1.0, 3.4, 2.0e2, 2.0E2 (2x107?)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

28

Atoms and booleans

* A sequence starting with a lower-case character followed
by characters or digits, ...

— person, peter
— “Seif Haridi’

 Booleans:
— ftrue
— false

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

29

Records

e Compound representation (data-structures)

= (D) = 1) - () =)

— (l) is a literal

« Examples

— person(age:X1 name:X2)
person(1:X1 2:X2)
I (1:H 2:T)

Nil
person

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

30

Syntactic sugar (tuples)

Tuples
D) - (x)) (tuple)
This 1s equivalent to the record

O 1) - me{xy))

Example:
person(‘George’ 25)
This 1s the record

person(1: ‘George’ 2:25)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

31

Syntactic sugar (lists)

Lists
(xp) | (xy) (a cons with the infix operator ‘|)

This 1s equivalent to the tuple

T ((xy) €x2))

Example:
H|T

This 1s the tuple
THT)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

32

Syntactic sugar (lists)

e Lists

o) | Q) [€x3)

" associates to the right

Qo) | (Gep) | €x3)) |

1
« Example:
11 2|3]nil 2 T
e Is
T (2]@]nil)) 3 nil

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 33

Syntactic sugar (complete lists)

e Complete lists

« Example:

[123] I
e Is

T (2]@]nil)) 1

3 nil

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 34

Strings

« A string 1s a list of character codes enclosed with double
quotes

« Ex:"E=mc’2’
* Means the same as [69 61 109 99 94 50]

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

35

Procedure declarations

According to the kernel language

() =proc{§ (y1) ... (v} {s) end

1s a legal statement
It binds (X) to a procedure value
This statement actually declares (introduces) a procedure

Another syntactic variant which 1s more familiar 1s

proc {(x) (v1) --- {vu)} {s) end

This introduces (declares) the procedure (X)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 36

Operations of basic types

* Arithmetics

— Floating point numbers: +,-,*, and /

— Integers: +,-,*,div (integer division, i.e. truncate fractional part),

mod (the remainder after a division, e.g.10 mod 3 =1)

* Record operations

— Arity, Label, and ”.”

— X = person(name:”George” age:25)

— {Arity X} = [age name]

— {Label X} = person, X.age =25
« Comparisons

— Boolean comparisons, including ==, \= (equality)

— Numeric comparisons, =<, <, >, >=, compares integers, floats, and
atoms

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 37

Value expressions

(v) = (procedure) | (record) | (number) | (basicExpr)

(basicExpr) ::= ... | (numberExpr) | ...

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Syntactic sugar (multiple variables)

e Multiple variable introduction

local XY in (statement) end

* 1s transformed to
local X in
local Y in (statement) end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 39

Syntactic sugar (basic expressions)

Basic expression nesting

if (basicExpr) then (statement), else (statement), end

1s transformed to
local T in

T = (basicExpr)

if T then (statement), else (statement), end
end

where T is a fresh ("'new’) variable identifier

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 40

Syntactic sugar (variables)

e Variable initialization

local X = (value) in {statement) end

e [s transformed to
local Xin
X = (value)
(statement)
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

41

38.

39.

40,
41.

Exercises

Using Oz, perform a few basic operations on numbers,
records, and booleans (see Appendix B1-B3)

Explain the behavior of the declare statement in the
interactive environment. Give an example of an
interactive Oz session where “declare” and
“declare .. in’ produce different results. Explain
why.

CTM Exercise 2.9.1

Describe what an anonymous procedure 1s, and write one
in Oz. When are anonymous procedures useful?

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 42

