Declarative Computation Model

Kernel language semantics
Basic concepts, the abstract machine (CTM 2.4.1-2.4.2)

Carlos Varela
RPI
March 9, 2015

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL
Sequential declarative computation model

- The single assignment store
 - declarative (dataflow) variables
 - partial values (variables and values are also called entities)
- The kernel language syntax
- The kernel language semantics
 - The environment: maps textual variable names (variable identifiers) into entities in the store
 - Interpretation (execution) of the kernel language elements (statements) by the use of an abstract machine
 - Abstract machine consists of an execution stack of statements transforming the store
Kernel language syntax

The following defines the syntax of a statement, $\langle s \rangle$ denotes a statement.

\[
\langle s \rangle ::= \begin{array}{l}
\text{skip} \\
\mid \langle x \rangle = \langle y \rangle \\
\mid \langle x \rangle = \langle v \rangle \\
\mid \langle s_1 \rangle \langle s_2 \rangle \\
\mid \text{local} \ (x) \ \text{in} \ \langle s_1 \rangle \ \text{end} \\
\mid \text{if} \ (x) \ \text{then} \ \langle s_1 \rangle \ \text{else} \ \langle s_2 \rangle \ \text{end} \\
\mid \{ \langle x \rangle \ \langle y_1 \rangle \ldots \langle y_n \rangle \ \} \\
\mid \text{case} \ (x) \ \text{of} \ \langle \text{pattern} \rangle \ \text{then} \ \langle s_1 \rangle \ \text{else} \ \langle s_2 \rangle \ \text{end}
\end{array}
\]

\[
\langle v \rangle ::= \begin{array}{l}
\text{proc} \ \{ \ \$ \ \langle y_1 \rangle \ldots \langle y_n \rangle \ \} \ \langle s_1 \rangle \ \text{end} \mid \ldots
\end{array}
\]

$\langle \text{pattern} \rangle ::= \ldots$

empty statement
variable-variable binding
variable-value binding
sequential composition
declaration
conditional
procedural application
pattern matching
value expression
Examples

• local X in X = 1 end

• local X Y T Z in
 X = 5
 Y = 10
 T = (X>=Y)
 if T then Z = X else Z = Y end
 {Browse Z}
end

• local S T in
 S = proc {$ X Y} Y = X*X end
 {S 5 T}
 {Browse T}
end
Procedure abstraction

• Any statement can be abstracted to a procedure by selecting a number of the ‘free’ variable identifiers and enclosing the statement into a procedure with the identifiers as parameters

 • if X >= Y then Z = X else Z = Y end

 • Abstracting over all variables
 proc {Max X Y Z}
 if X >= Y then Z = X else Z = Y end
 end

 • Abstracting over X and Z
 proc {LowerBound X Z}
 if X >= Y then Z = X else Z = Y end
 end
A computation defines how the execution state is transformed step by step from the initial state to the final state.

A single assignment store σ is a set of store variables, a variable may be unbound, bound to a partial value, or bound to a group of other variables.

An environment E is mapping from variable identifiers to variables or values in σ, e.g. $\{X \rightarrow x_1, Y \rightarrow x_2\}$.

A semantic statement is a pair $(\langle s \rangle, E)$ where $\langle s \rangle$ is a statement.

ST is a stack of semantic statements.
Computations (abstract machine)

- A computation defines how the execution state is transformed step by step from the initial state to the final state.
- The *execution state* is a pair
 $$(ST, \sigma)$$
- ST is a stack of semantic statements
- A *computation* is a sequence of execution states
 $$(ST_0, \sigma_0) \rightarrow (ST_1, \sigma_1) \rightarrow (ST_2, \sigma_2) \rightarrow ...$$
Semantics

• To execute a program (i.e., a statement) $\langle s \rangle$ the initial execution state is
 \[([(\langle s \rangle, \emptyset)], \emptyset) \]
• ST has a single semantic statement ($\langle s \rangle, \emptyset$)
• The environment E is empty, and the store σ is empty
• $[...]$ denotes the stack
• At each step the first element of ST is popped and
 execution proceeds according to the form of the element
• The final execution state (if any) is a state in which ST is
 empty
• The semantic statement is
 \((\text{skip}, E)\)
• Continue to next execution step
- The semantic statement is \((\text{skip}, E)\)
- Continue to next execution step
Sequential composition

- The semantic statement is
 \((\langle s_1 \rangle \langle s_2 \rangle, E)\)
- Push \((\langle s_2 \rangle, E)\) and then push \((\langle s_1 \rangle, E)\) on \(ST\)
- Continue to next execution step

\[
\begin{array}{c|c}
(\langle s_1 \rangle \langle s_2 \rangle, E) & \sigma \\
\hline
ST & \sigma
\end{array}
\] +

\[
\begin{array}{c|c}
(\langle s_1 \rangle, E) & \sigma \\
\hline
(\langle s_2 \rangle, E) & \sigma
\end{array}
\]
Calculating with environments

- E is mapping from identifiers to entities (both store variables and values) in the store
- The notation $E(\langle y \rangle)$ retrieves the entity x associated with the identifier $\langle y \rangle$ from the store
- The notation $E + \{\langle y \rangle_1 \rightarrow x_1, \langle y \rangle_2 \rightarrow x_2, \ldots, \langle y \rangle_n \rightarrow x_n\}$
 - denotes a new environment E' constructed from E by adding the mappings
 $\{\langle y \rangle_1 \rightarrow x_1, \langle y \rangle_2 \rightarrow x_2, \ldots, \langle y \rangle_n \rightarrow x_n\}$
 - $E'(\langle z \rangle)$ is x_k if $\langle z \rangle$ is equal to $\langle y \rangle_k$, otherwise $E'(\langle z \rangle)$ is equal to $E(\langle z \rangle)$
- The notation $E|_{\{\langle y \rangle_1, \langle y \rangle_2, \ldots, \langle y \rangle_n\}}$ denotes the projection of E onto the set $\{\langle y \rangle_1, \langle y \rangle_2, \ldots, \langle y \rangle_n\}$, i.e., E restricted to the members of the set
Calculating with environments (2)

- \(E = \{X \rightarrow 1, Y \rightarrow [2 \ 3], Z \rightarrow x_i\} \)
- \(E' = E + \{X \rightarrow 2\} \)
- \(E'(X) = 2, E(X) = 1 \)
- \(E|_{\{X,Y\}} \) restricts \(E \) to the ’domain’ \(\{X,Y\} \),
i.e., it is equal to \(\{X \rightarrow 1, Y \rightarrow [2 \ 3]\} \)
Calculating with environments (3)

- local X in

 $X = 1$ \hspace{1cm} (E)

 local X in

 $X = 2$ \hspace{1cm} (E')

 \{Browse X\}

 end \hspace{1cm} (E)

 \{Browse X\}

 end
Lexical scoping

• Free and bound identifier occurrences
• An identifier occurrence is *bound* with respect to a statement \(\langle s \rangle\) if it is in the scope of a declaration inside \(\langle s \rangle\)
• A variable identifier is declared either by a ‘local’ statement, as a parameter of a procedure, or implicitly declared by a case statement
• An identifier occurrence is *free* otherwise
• In a running program every identifier is bound (i.e., declared)
Lexical scoping (2)

- proc \{P X\}
 local Y in Y = 1 \{Browse Y\} end
 X = Y
end

Free Occurrences → Bound Occurrences
Lexical scoping (3)

- `local Arg1 Arg2 in`
 - `Arg1 = 111*111`
 - `Arg2 = 999*999`
 - `Res = Arg1*Arg2`

This is not a runnable program!
Lexical scoping (4)

- `local Res in`

 `local Arg1 Arg2 in`

 `Arg1 = 111*111`

 `Arg2 = 999*999`

 `Res = Arg1*Arg2`

 `end`

 `{Browse Res}`

 `end`
Lexical scoping (5)

local P Q in
 proc {P} {Q} end
 proc {Q} {Browse hello} end
local Q in
 proc {Q} {Browse hi} end
 {P}
end
end
42. Translate the following function to the kernel language:

```plaintext
fun {AddList L1 L2}
  case L1 of H1|T1 then
    case L2 of H2|T2 then
      H1+H2|{AddList T1 T2}
    end
  end
else nil end
end
```

43. Translate the following function call to the kernel language:

```plaintext
{Browse {Max 5 7}}
```
Exercises

44. Explain the difference between static scoping and dynamic scoping. Give an example program that produces different results with static and dynamic scoping.

45. Think of a reason why static scoping may be preferable to dynamic scoping. Think of a reason why dynamic scoping may be preferable to static scoping.