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Overview 

•  What is declarativeness? 
–  Classification  
–  Advantages for large and small programs 

•  Control Abstractions 
–  Iterative programs 

•  Higher-Order Programming 
–  Procedural abstraction 
–  Genericity 
–  Instantiation 
–  Embedding 

•  Abstract data types 
–  Encapsulation 
–  Security 
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Declarative operations (1) 
•  An  operation is declarative if whenever it is called with 

the same arguments, it returns the same results 
independent of any other computation state 

•  A declarative operation is: 
–  Independent (depends only on its arguments, nothing else) 
–  Stateless (no internal state is remembered between calls) 
–  Deterministic (call with same operations always give same results) 

•  Declarative operations can be composed together to yield 
other declarative components  
–  All basic operations of the declarative model are declarative and 

combining them always gives declarative components 
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Declarative 
operation 

Arguments 

Results 

Declarative operations (2) 

rest of computation 
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Why declarative components (1) 

•  There are two reasons why they are important: 
•  (Programming in the large) A declarative component can be written,  

tested, and proved correct independent of other components and of its 
own past history. 
–  The complexity (reasoning complexity) of a program composed of 

declarative components is the sum of the complexity of the components 
–  In general the reasoning complexity of programs that are composed of 

nondeclarative components explodes because of the intimate interaction 
between components 

•  (Programming in the small) Programs written in the declarative model 
are much easier to reason about than programs written in more 
expressive models (e.g., an object-oriented model). 
–  Simple algebraic and logical reasoning techniques can be used 
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Why declarative components (2) 
•  Since declarative components are 

mathematical functions, algebraic 
reasoning is possible i.e. 
substituting equals for equals 

•  The declarative model of Chapter 2 
guarantees that all programs written 
are declarative 

•  Declarative components can be 
written in models that allow stateful 
data types, but there is no guarantee  

€ 

Given
f (a) = a2

We can replace f (a) in any other 
equation
b = 7 f (a)2  becomes b = 7a4
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Classification of 
declarative programming 

Declarative 
programming 

Descriptive 

Programmable 

Observational 

Definitional Declarative  
model 

Functional  
programming 

Deterministic 
logic programming 

•  The word declarative means many things to 
many people.  Let’s try to eliminate the 
confusion. 

•  The basic intuition is to program by defining 
the what without explaining the how   
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Descriptive language 

〈s〉  ::=  skip                                                  empty statement 
      |   〈x〉 = 〈y〉                                          variable-variable binding                                                          

 |   〈x〉 = 〈record〉         variable-value binding                                                        
 |   〈s1〉 〈s2〉          sequential composition 
 |  local 〈x〉 in 〈s1〉 end        declaration 

 

Other descriptive languages include HTML and XML  
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Descriptive language 

<person id = ”530101-xxx”> 
 <name> Seif </name> 
 <age> 48 </age> 

</person> 

Other descriptive languages include HTML and XML  
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Kernel language 

〈s〉  ::=  skip                                                  empty statement 
      |   〈x〉 = 〈y〉                                          variable-variable binding                                                          

 |   〈x〉 = 〈v〉          variable-value binding                                                        
 |   〈s1〉 〈s2〉          sequential composition 
 |  local 〈x〉 in 〈s1〉 end        declaration 
 |  proc ’{’〈x〉 〈y1〉 … 〈yn〉 ’}’ 〈s1〉 end    procedure introduction 
 |  if 〈x〉 then 〈s1〉 else 〈s2〉 end      conditional 
 |  ’{’ 〈x〉 〈y1〉 … 〈yn〉 ’}’        procedure application 
 |  case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end   pattern matching 

 

The following defines the syntax of a statement, 〈s〉 denotes a statement  
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Why the KL is declarative 

•  All basic operations are declarative 
•  Given the components (sub-statements) are declarative, 

–  sequential composition 
–  local statement 
–  procedure definition 
–  procedure call 
–  if statement 
–  case statement 

are all declarative (independent, stateless, deterministic). 
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Iterative computation 
•  An iterative computation is one whose execution stack is 

bounded by a constant, independent of the length of the 
computation 

•  Iterative computation starts with an initial state S0, and 
transforms the state in a number of steps until a final state 
Sfinal is reached: 

s s sfinal0 1→ → →...
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The general scheme 
fun {Iterate Si} 

 if {IsDone Si} then Si 

 else Si+1 in 
  Si+1 = {Transform Si} 

  {Iterate Si+1} 
 end 

end  
•  IsDone and Transform are problem dependent   
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The computation model 

•  STACK : [ R={Iterate S0}] 
•  STACK : [ S1 = {Transform S0}, 

  R={Iterate S1} ] 

•  STACK : [ R={Iterate Si}] 
•  STACK : [ Si+1 = {Transform Si}, 

  R={Iterate Si+1} ] 

•  STACK : [ R={Iterate Si+1}] 
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Newton’s method for the 
square root of a positive real number 

•  Given a real number x, start with a guess g, and improve 
this guess iteratively until it is accurate enough 

•  The improved guess g’ is the average of g and x/g: 
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Newton’s method for the 
square root of a positive real number 

•  Given a real number x, start with a guess g, and improve 
this guess iteratively until it is accurate enough 

•  The improved guess g’ is the average of g and x/g: 
•  Accurate enough is defined as:  

 
  | x – g2 | / x < 0.00001 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17 

SqrtIter 
fun {SqrtIter Guess X} 
   if {GoodEnough Guess X} then Guess 
   else  

 Guess1 = {Improve Guess X} in 
      {SqrtIter Guess1 X} 
   end 
end 
•  Compare to the general scheme: 

–  The state is the pair Guess and X 
–  IsDone is implemented by the procedure GoodEnough 
–  Transform is implemented by the procedure Improve 
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The program version 1 
fun {Sqrt X} 
   Guess = 1.0 
in {SqrtIter Guess X} 
end 
fun {SqrtIter Guess X} 
   if {GoodEnough Guess X} then 

Guess 
   else 
      {SqrtIter {Improve Guess X} X} 
   end 
end 

fun {Improve Guess X} 
   (Guess + X/Guess)/2.0 
end 
fun {GoodEnough Guess X} 
   {Abs X - Guess*Guess}/X < 0.00001 
end 
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Using local procedures 

•  The main procedure Sqrt uses the helper procedures 
SqrtIter,  GoodEnough, Improve, and Abs 

•  SqrtIter is only needed inside Sqrt 
•  GoodEnough and Improve are only needed inside SqrtIter 
•  Abs (absolute value) is a general utility 
•  The general idea is that helper procedures should not be 

visible globally, but only locally 
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Sqrt version 2 
local 
   fun {SqrtIter Guess X} 
      if {GoodEnough Guess X} then Guess 
      else {SqrtIter {Improve Guess X} X} end 
   end 
   fun {Improve Guess X} 
      (Guess + X/Guess)/2.0 
   end 
   fun {GoodEnough Guess X} 
      {Abs X - Guess*Guess}/X < 0.000001 
   end 
in 
   fun {Sqrt X} 
      Guess = 1.0 
   in {SqrtIter Guess X} end 
end 
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Sqrt version 3 
•  Define GoodEnough and Improve inside SqrtIter 
local 
   fun {SqrtIter Guess X} 
      fun {Improve} 

  (Guess + X/Guess)/2.0 
      end 
      fun {GoodEnough} 

  {Abs X - Guess*Guess}/X < 0.000001 
      end 
   in 
       if {GoodEnough} then Guess 
       else {SqrtIter {Improve} X} end 
   end 
in fun {Sqrt X} 
       Guess = 1.0 in 
       {SqrtIter Guess X} 
   end 
end 
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Sqrt version 3 
•  Define GoodEnough and Improve inside SqrtIter 
local 
   fun {SqrtIter Guess X} 
      fun {Improve} 

  (Guess + X/Guess)/2.0 
      end 
      fun {GoodEnough} 

  {Abs X - Guess*Guess}/X < 0.000001 
      end 
   in 
       if {GoodEnough} then Guess 
       else {SqrtIter {Improve} X} end 
   end 
in fun {Sqrt X} 
       Guess = 1.0 in 
       {SqrtIter Guess X} 
   end 
end 

The program has a single 
drawback: on each iteration two 
procedure values are created, one 
for Improve and one for 
GoodEnough 
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Sqrt final version 
fun {Sqrt X} 
   fun {Improve Guess} 
      (Guess + X/Guess)/2.0 
   end 
   fun {GoodEnough Guess} 
      {Abs X - Guess*Guess}/X < 0.000001 
   end 
   fun {SqrtIter Guess} 
       if {GoodEnough Guess} then Guess 
       else {SqrtIter {Improve Guess} } end 
   end 
   Guess = 1.0 
in {SqrtIter Guess} 
end 

The final version is 
a compromise between 
abstraction and efficiency 
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From a general scheme 
to a control abstraction (1) 

fun {Iterate Si} 
 if {IsDone Si} then Si 

 else Si+1 in 
  Si+1 = {Transform Si} 

  {Iterate Si+1} 
 end 

end  
•  IsDone and Transform are problem dependent   
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From a general scheme 
to a control abstraction (2) 

fun {Iterate S  IsDone Transform} 
 if {IsDone S} then S 

 else S1 in 
  S1 = {Transform S} 
  {Iterate S1 IsDone Transform} 
 end 

end   

fun {Iterate Si} 
 if {IsDone Si} then Si 

 else Si+1 in 
  Si+1 = {Transform Si} 
  {Iterate Si+1} 
 end 

end   
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Sqrt using the Iterate abstraction 
fun {Sqrt X} 
   fun {Improve Guess} 
      (Guess + X/Guess)/2.0 
   end 
   fun {GoodEnough Guess} 
      {Abs X - Guess*Guess}/X < 0.000001 
   end 
   Guess = 1.0 
in 
   {Iterate Guess GoodEnough Improve} 
end 
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Sqrt using the control abstraction 
fun {Sqrt X} 

 {Iterate 
   1.0  
   fun {$ G} {Abs X - G*G}/X < 0.000001 end 

       fun {$ G} (G + X/G)/2.0 end  
 } 

end 

Iterate could become a linguistic abstraction 
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Higher-order programming 
•  Higher-order programming = the set of programming techniques that are 

possible with procedure values (lexically-scoped closures) 
•  Basic operations 

–  Procedural abstraction: creating procedure values with lexical scoping 
–  Genericity: procedure values as arguments 
–  Instantiation: procedure values as return values 
–  Embedding: procedure values in data structures 

•  Control abstractions 
–  Integer and list loops, accumulator loops, folding a list (left and right) 

•  Data-driven techniques 
–  List filtering, tree folding 

•  Explicit lazy evaluation, currying 
•  Higher-order programming is the foundation of component-based 

programming and object-oriented programming 
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Procedural abstraction 

•  Procedural abstraction is the ability to convert any 
statement into a procedure value 
–  A procedure value is usually called a closure, or more precisely,  a 

lexically-scoped closure 
–  A procedure value is a pair: it combines the procedure code with 

the environment where the procedure was created (the contextual 
environment) 

•  Basic scheme: 
–  Consider any statement <s> 
–  Convert it into a procedure value: P = proc {$} <s> end 
–  Executing {P} has exactly the same effect as executing <s> 
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Procedural abstraction 
fun {AndThen B1 B2} 
   if B1 then B2 else false 
   end 
end 
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Procedural abstraction 
fun {AndThen B1 B2} 
   if {B1} then {B2} else false 
   end 
end 
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A common limitation 
•  Most popular imperative languages (C, Pascal) do not have procedure values 
•  They have only half of the pair: variables can reference procedure code, but there is no 

contextual environment 
•  This means that control abstractions cannot be programmed in these languages 

–  They provide a predefined set of control abstractions (for, while loops, if statement) 
•  Generic operations are still possible 

–  They can often get by with just the procedure code.  The contextual environment is often 
empty. 

•  The limitation is due to the way memory is managed in these languages 
–  Part of the store is put on the stack and deallocated when the stack is deallocated 
–  This is supposed to make memory management simpler for the programmer on systems that 

have no garbage collection 
–  It means that contextual environments cannot be created, since they would be full of dangling 

pointers 

•  Object-oriented programming languages can use objects to encode procedure 
values by making external references (contextual environment) instance 
variables. 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 33 

Genericity 
•  Replace specific 

entities (zero 0 and 
addition +) by 
function arguments 

•  The same routine 
can do the sum, the 
product, the logical 
or, etc. 

fun {SumList L} 
 case L  
of  nil then 0 

 []  X|L2 then X+{SumList L2} 
 end 

end 

fun {FoldR L F U} 
 case L  
of  nil then U 

 []  X|L2 then {F X  {FoldR L2 F U}} 
 end 

end 
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Instantiation 

•  Instantiation is when a procedure returns a procedure value as its result 
•  Calling {FoldFactory fun {$ A B} A+B end 0} returns a function that behaves identically 

to SumList, which is an « instance » of a folding function 

fun {FoldFactory F U} 
 fun {FoldR L} 
  case L  

 of nil then U 
  []  X|L2 then {F X  {FoldR L2}} 
  end 
 end 

in 
 FoldR 

end 
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Embedding 
•  Embedding is when procedure values are put in data 

structures 
•  Embedding has many uses: 

–  Modules: a module is a record that groups together a set of related 
operations 

–  Software components: a software component is a generic function 
that takes a set of modules as its arguments and returns a new 
module.  It can be seen as specifying a module in terms of the 
modules it needs. 

–  Delayed evaluation (also called explicit lazy evaluation): build just 
a small part of a data structure, with functions at the extremities 
that can be called to build more.  The consumer can control 
explicitly how much of the data structure is built. 
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Control Abstractions 
declare 
proc {For I J P} 
   if I >= J then skip 
   else {P I} {For I+1 J P} 
   end 
end 
 
{For 1 10 Browse} 
 
for I in 1..10 do {Browse I} end 
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Control Abstractions 
proc {ForAll Xs P} 
   case Xs 
   of nil then skip 
   [] X|Xr then 
      {P X} {ForAll Xr P} 
   end 
end 
 
{ForAll [a b c d] 
  proc{$ I} {System.showInfo "the item is: " # I} end} 
 
for I in [a b c d] do 
   {System.showInfo "the item is: " # I} 
end 
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Control Abstractions 
fun {FoldL Xs F U} 
   case Xs 
   of nil then U 
   [] X|Xr then {FoldL Xr F {F X U}} 
   end 
end 
Assume a list [x1 x2 x3 ....] 
S0  →  S1       →  S2   
U → {F x1 U}→ {F x2 {F x1 U}} → ....→ 
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Control Abstractions 
fun {FoldL Xs F U} 
   case Xs 
   of nil then U 
   [] X|Xr then {FoldL Xr F {F X U}} 
   end 
end 
 
What does this program do ? 
{Browse {FoldL [1 2 3] 

  fun {$ X Y} X|Y end nil}} 
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List-based techniques 

fun {Map Xs F} 
   case Xs 
   of nil then nil 
   [] X|Xr then 
      {F X}|{Map Xr F} 
   end 
end 
 

fun {Filter Xs P} 
   case Xs 
   of nil then nil 
   [] X|Xr andthen {P X} then 
      X|{Filter Xr P} 
   [] X|Xr then {Filter Xr P} 
   end 
end 
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Tree-based techniques 
proc {DFS Tree} 
   case Tree  of tree(node:N sons:Sons …) then 

  {Browse N} 
      for T in Sons do {DFS T} end 
   end 
end 
 

proc {VisitNodes Tree P} 
   case Tree  of tree(node:N sons:Sons …) then 

  {P N} 
      for T in Sons do {VisitNodes T P} end 
   end 
end 
 

Call {P T} at each node T 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 42 

Explicit lazy evaluation 
•  Supply-driven evaluation. (e.g.The list is completely 

calculated independent of whether the elements are needed 
or not. ) 

•  Demand-driven execution.(e.g. The consumer of the list 
structure asks for new list elements when they are needed.) 

•  Technique: a programmed trigger. 
•  How to do it with higher-order programming?  The 

consumer has a function that it calls when it needs a new 
list element. The function call returns a pair: the list 
element and a new function. The new function is the new 
trigger: calling it returns the next data item and another 
new function. And so forth. 
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Currying 
•  Currying is a technique that can simplify programs that 

heavily use higher-order programming. 
•  The idea:function of n arguments ⇒ n nested functions of 

one argument. 
•  Advantage: The intermediate functions can be useful in 

themselves. 

fun {Max  X  Y} 
    if X>=Y then  X  else  Y end 
end 

fun {Max  X} 
    fun {$ Y} 
         if X>=Y then  X  else  Y end 
    end 
end 
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Abstract data types 
•  A datatype is a set of values and an associated set of 

operations 
•  A datatype is abstract only if it is completely described by 

its set of operations regardless of its implementation 
•  This means that it is possible to change the implementation 

of the datatype without changing its use 
•  The datatype is thus described by a set of procedures 
•  These operations are the only thing that a user of the 

abstraction can assume 
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Example: A Stack 
•  Assume we want to define a new datatype 〈stack T〉 whose 

elements are of any type T 
fun {NewStack}: 〈Stack T〉 
fun {Push 〈Stack T〉 〈T〉 }: 〈Stack T〉 
fun {Pop 〈Stack T〉 〈T〉 }: 〈Stack T〉 
fun {IsEmpty 〈Stack T〉 }: 〈Bool〉  

•  These operations normally satisfy certain conditions: 
{IsEmpty {NewStack}} = true 
for any E and S0, S1={Push S0 E} and S0 ={Pop S1 E} hold 
{Pop {NewStack} E} raises error 
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Stack (implementation) 
fun {NewStack} nil end 
fun {Push S E} E|S end 
fun {Pop S E} case S of  X|S1 then E = X  S1 end end 
fun {IsEmpty S} S==nil end 
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Stack (another implementation) 
fun {NewStack} nil end 
fun {Push S E} E|S end 
fun {Pop S E} case S of  X|S1 then E = X  S1 end end 
fun {IsEmpty S} S==nil end 
 
fun {NewStack} emptyStack end 
fun {Push S E} stack(E S) end 
fun {Pop S E} case S of stack(X S1) then E = X S1 end end 
fun {IsEmpty S} S==emptyStack end 
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Dictionaries 
•  The datatype dictionary is a finite mapping from a set T to 〈value〉, 

where T is either 〈atom〉 or 〈integer〉 
•  fun {NewDictionary} 

–  returns an empty mapping  
•  fun {Put D Key Value} 

–  returns a dictionary identical to D except Key is mapped to Value 
•  fun {CondGet D Key Default} 

–  returns the value corresponding to Key in D, otherwise returns 
Default 

•  fun {Domain D} 
–  returns a list of the keys in D 
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Implementation 
fun {Put Ds Key Value}  
   case Ds  
   of nil then [Key#Value]  
   [] (K#V)|Dr andthen Key==K then  
      (Key#Value) | Dr  
   [] (K#V)|Dr andthen K>Key then  
      (Key#Value)|(K#V)|Dr  
   [] (K#V)|Dr andthen K<Key then  
      (K#V)|{Put Dr Key Value}  
   end  
end  
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Implementation 
fun {CondGet Ds Key Default}  
   case Ds  
   of nil then Default  
   [] (K#V)|Dr andthen Key==K then  
      V  
   [] (K#V)|Dr andthen K>Key then  
      Default  
   [] (K#V)|Dr andthen K<Key then  
      {CondGet Dr Key Default}  
   end  
end  
fun {Domain Ds}  
   {Map Ds fun {$ K#_} K end}  
end 
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Further implementations 
•  Because of abstraction, we can replace the dictionary ADT 

implementation using a list, whose complexity is linear (i.e., 
O(n)), for a binary tree implementation with logarithmic 
operations (i.e., O(log(n)).  

•  Data abstraction makes clients of the ADT unaware (other 
than through perceived efficiency) of the internal 
implementation of the data type. 

•  It is important that clients do not use anything about the 
internal representation of the data type (e.g., using {Length 
Dictionary} to get the size of the dictionary).  Using only 
the interface (defined ADT operations) ensures that 
different implementations can be used in the future. 
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Secure abstract data types: 
Stack is not secure 

fun {NewStack} nil end 
fun {Push S E} E|S end 
fun {Pop S E} 

 case S of X|S1 then E=X  S1 end 
end 
fun {IsEmpty S} S==nil end 
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Secure abstract data types II 
•  The representation of the stack is visible: 
 

 [a b c d] 
 
•  Anyone can use an incorrect representation, i.e., by passing 

other language entities to the stack operation, causing it to 
malfunction (like a|b|X or Y=a|b|Y) 

•  Anyone can write new operations on stacks, thus breaking 
the abstraction-representation barrier 

•  How can we guarantee that the representation is invisible? 
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Secure abstract data types III 

•  The model can be extended.  Here are two ways: 
–  By adding a new basic type, an unforgeable constant called a name 
–  By adding encapsulated state. 

•  A name is like an atom except that it cannot be typed in on 
a keyboard or printed! 
–  The only way to have a name is if one is given it explicitly 

•  There are just two operations on names: 
N={NewName} : returns a fresh name 
N1==N2 : returns true or false 
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Secure abstract datatypes IV 

proc {NewWrapper ?Wrap ?Unwrap}  
    Key={NewName}  
in  
    fun {Wrap X}  
            fun {$ K} if K==Key then X end end 
    end  
    fun {Unwrap C}  
            {C Key} 
   end  
end 

•  We want to « wrap » and « unwrap » values 
•  Let us use names to define a wrapper & unwrapper 
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Secure abstract data types: 
A secure stack 

With the wrapper & unwrapper we can build a secure stack 
 
local Wrap Unwrap in 

 {NewWrapper Wrap Unwrap} 
 fun {NewStack} {Wrap nil} end 
 fun {Push S E} {Wrap E|{Unwrap S}} end 
 fun {Pop S E} 
  case {Unwrap S} of X|S1 then E=X  {Wrap S1} end 
 end 
 fun {IsEmpty S} {Unwrap S}==nil end 

end 
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Capabilities and security 
•  We say a computation is secure if it has well-defined and controllable 

properties, independent of the existence of other (possibly malicious) 
entities (either computations or humans) in the system 

•  What properties must a language have to be secure? 
•  One way to make a language secure is to base it on capabilities 

–  A capability is an unforgeable language entity (« ticket ») that gives its 
owner the right to perform a particular action and only that action 

–  In our model, all values are capabilities (records, numbers, procedures, 
names) since they give the right to perform operations on the values 

–  Having a procedure gives the right to call that procedure.  Procedures are 
very general capabilities, since what they do depends on their argument 

–  Using names as procedure arguments allows very precise control of rights; 
for example, it allows us to build secure abstract data types 

•  Capabilities originated in operating systems research 
–  A capability can give a process the right to create a file in some directory 
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Secure abstract datatypes V 
•  We add two new concepts to the computation model 
•  {NewChunk Record} 

–  returns a value similar to record but its arity cannot be inspected 
–  recall {Arity foo(a:1 b:2)}  is [a b] 

•  {NewName} 
–  a function that returns a new symbolic (unforgeable, i.e. cannot be 

guessed) name 
–  foo(a:1 b:2 {NewName}:3) makes impossible to access the third 

component, if you do not know the arity 

•  {NewChunk foo(a:1 b:2 {NewName}:3) } 
–  Returns what ? 
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Secure abstract datatypes VI 
proc {NewWrapper ?Wrap ?Unwrap}  
   Key={NewName}  
in  
   fun {Wrap X}  
      {NewChunk foo(Key:X)}  
   end  
   fun {Unwrap C}  
      C.Key  
   end  
end 
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Secure abstract data types: 
Another secure stack 

With the new wrapper & unwrapper we can build another secure stack 
(since we only use the interface to wrap and unwrap, the code is 
identical to the one using higher-order programming) 

 
local Wrap Unwrap in 

 {NewWrapper Wrap Unwrap} 
 fun {NewStack} {Wrap nil} end 
 fun {Push S E} {Wrap E|{Unwrap S}} end 
 fun {Pop S E} 
  case {Unwrap S} of X|S1 then E=X  {Wrap S1} end 
 end 
 fun {IsEmpty S} {Unwrap S}==nil end 

end 
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Exercises 

58. Modify the Pascal function to use local functions for 
AddList, ShiftLeft, ShiftRight.  Think about the 
abstraction and efficiency tradeoffs. 

59. CTM Exercise 3.10.2 (page 230) 
60. CTM Exercise 3.10.3 (page 230) 
61. Develop a control abstraction for iterating over a list of 

elements. 
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Exercises 
62.  Implement the function {FilterAnd Xs P Q} that returns 

all elements of Xs in order for which P and Q return true. 
Hint: Use {Filter Xs P}. 

63. Compute the maximum element from a nonempty list of 
numbers by folding. 

64. Suppose you have two sorted lists. Merging is a simple 
method to obtain an again sorted list containing the 
elements from both lists. Write a Merge function that is 
generic with respect to the order relation. 

65. CTM Exercise 3.10.17 (pg. 232).  You do not need to 
implement it using gump, simply specify how you would 
add currying to Oz (syntax and semantics). 


