
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Programming Techniques
 Declarativeness, iterative computation (CTM 3.1-3.2)

 Higher-order programming (CTM 3.6)
 Abstract data types (CTM 3.7)

Carlos Varela
Rensselaer Polytechnic Institute

April 9, 2015

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Overview

•  What is declarativeness?
–  Classification
–  Advantages for large and small programs

•  Control Abstractions
–  Iterative programs

•  Higher-Order Programming
–  Procedural abstraction
–  Genericity
–  Instantiation
–  Embedding

•  Abstract data types
–  Encapsulation
–  Security

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

Declarative operations (1)
•  An operation is declarative if whenever it is called with

the same arguments, it returns the same results
independent of any other computation state

•  A declarative operation is:
–  Independent (depends only on its arguments, nothing else)
–  Stateless (no internal state is remembered between calls)
–  Deterministic (call with same operations always give same results)

•  Declarative operations can be composed together to yield
other declarative components
–  All basic operations of the declarative model are declarative and

combining them always gives declarative components

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

Declarative
operation

Arguments

Results

Declarative operations (2)

rest of computation

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Why declarative components (1)

•  There are two reasons why they are important:
•  (Programming in the large) A declarative component can be written,

tested, and proved correct independent of other components and of its
own past history.
–  The complexity (reasoning complexity) of a program composed of

declarative components is the sum of the complexity of the components
–  In general the reasoning complexity of programs that are composed of

nondeclarative components explodes because of the intimate interaction
between components

•  (Programming in the small) Programs written in the declarative model
are much easier to reason about than programs written in more
expressive models (e.g., an object-oriented model).
–  Simple algebraic and logical reasoning techniques can be used

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

Why declarative components (2)
•  Since declarative components are

mathematical functions, algebraic
reasoning is possible i.e.
substituting equals for equals

•  The declarative model of Chapter 2
guarantees that all programs written
are declarative

•  Declarative components can be
written in models that allow stateful
data types, but there is no guarantee

€

Given
f (a) = a2

We can replace f (a) in any other
equation
b = 7 f (a)2 becomes b = 7a4

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

Classification of
declarative programming

Declarative
programming

Descriptive

Programmable

Observational

Definitional Declarative
model

Functional
programming

Deterministic
logic programming

•  The word declarative means many things to
many people. Let’s try to eliminate the
confusion.

•  The basic intuition is to program by defining
the what without explaining the how

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

Descriptive language

〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

 | 〈x〉 = 〈record〉 variable-value binding
 | 〈s1〉 〈s2〉 sequential composition
 | local 〈x〉 in 〈s1〉 end declaration

Other descriptive languages include HTML and XML

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

Descriptive language

<person id = ”530101-xxx”>
 <name> Seif </name>
 <age> 48 </age>

</person>

Other descriptive languages include HTML and XML

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Kernel language

〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

 | 〈x〉 = 〈v〉 variable-value binding
 | 〈s1〉 〈s2〉 sequential composition
 | local 〈x〉 in 〈s1〉 end declaration
 | proc ’{’〈x〉 〈y1〉 … 〈yn〉 ’}’ 〈s1〉 end procedure introduction
 | if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
 | ’{’ 〈x〉 〈y1〉 … 〈yn〉 ’}’ procedure application
 | case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching

The following defines the syntax of a statement, 〈s〉 denotes a statement

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Why the KL is declarative

•  All basic operations are declarative
•  Given the components (sub-statements) are declarative,

–  sequential composition
–  local statement
–  procedure definition
–  procedure call
–  if statement
–  case statement

are all declarative (independent, stateless, deterministic).

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Iterative computation
•  An iterative computation is one whose execution stack is

bounded by a constant, independent of the length of the
computation

•  Iterative computation starts with an initial state S0, and
transforms the state in a number of steps until a final state
Sfinal is reached:

s s sfinal0 1→ → →...

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

The general scheme
fun {Iterate Si}

 if {IsDone Si} then Si

 else Si+1 in
 Si+1 = {Transform Si}

 {Iterate Si+1}
 end

end
•  IsDone and Transform are problem dependent

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

The computation model

•  STACK : [R={Iterate S0}]
•  STACK : [S1 = {Transform S0},

 R={Iterate S1}]

•  STACK : [R={Iterate Si}]
•  STACK : [Si+1 = {Transform Si},

 R={Iterate Si+1}]

•  STACK : [R={Iterate Si+1}]

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Newton’s method for the
square root of a positive real number

•  Given a real number x, start with a guess g, and improve
this guess iteratively until it is accurate enough

•  The improved guess g’ is the average of g and x/g:
! = +

= −

! = ! −

! !

! = ! − = + − =

< <

< − < +

g g x g

g x

g x
g

g x g x g x g

g g

i e g g x g g x

(/) /

(/) / /

/ , /

. . ,

2

2 2 2
2 2 2 1

2 2 0

ε

ε

ε ε

ε ε

ε ε ε

ε

For to be a better guess than g: <

i.e.

 < ,

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Newton’s method for the
square root of a positive real number

•  Given a real number x, start with a guess g, and improve
this guess iteratively until it is accurate enough

•  The improved guess g’ is the average of g and x/g:
•  Accurate enough is defined as:

 | x – g2 | / x < 0.00001

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

SqrtIter
fun {SqrtIter Guess X}
 if {GoodEnough Guess X} then Guess
 else

 Guess1 = {Improve Guess X} in
 {SqrtIter Guess1 X}
 end
end
•  Compare to the general scheme:

–  The state is the pair Guess and X
–  IsDone is implemented by the procedure GoodEnough
–  Transform is implemented by the procedure Improve

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

The program version 1
fun {Sqrt X}
 Guess = 1.0
in {SqrtIter Guess X}
end
fun {SqrtIter Guess X}
 if {GoodEnough Guess X} then

Guess
 else
 {SqrtIter {Improve Guess X} X}
 end
end

fun {Improve Guess X}
 (Guess + X/Guess)/2.0
end
fun {GoodEnough Guess X}
 {Abs X - Guess*Guess}/X < 0.00001
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

Using local procedures

•  The main procedure Sqrt uses the helper procedures
SqrtIter, GoodEnough, Improve, and Abs

•  SqrtIter is only needed inside Sqrt
•  GoodEnough and Improve are only needed inside SqrtIter
•  Abs (absolute value) is a general utility
•  The general idea is that helper procedures should not be

visible globally, but only locally

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

Sqrt version 2
local
 fun {SqrtIter Guess X}
 if {GoodEnough Guess X} then Guess
 else {SqrtIter {Improve Guess X} X} end
 end
 fun {Improve Guess X}
 (Guess + X/Guess)/2.0
 end
 fun {GoodEnough Guess X}
 {Abs X - Guess*Guess}/X < 0.000001
 end
in
 fun {Sqrt X}
 Guess = 1.0
 in {SqrtIter Guess X} end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

Sqrt version 3
•  Define GoodEnough and Improve inside SqrtIter
local
 fun {SqrtIter Guess X}
 fun {Improve}

 (Guess + X/Guess)/2.0
 end
 fun {GoodEnough}

 {Abs X - Guess*Guess}/X < 0.000001
 end
 in
 if {GoodEnough} then Guess
 else {SqrtIter {Improve} X} end
 end
in fun {Sqrt X}
 Guess = 1.0 in
 {SqrtIter Guess X}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 22

Sqrt version 3
•  Define GoodEnough and Improve inside SqrtIter
local
 fun {SqrtIter Guess X}
 fun {Improve}

 (Guess + X/Guess)/2.0
 end
 fun {GoodEnough}

 {Abs X - Guess*Guess}/X < 0.000001
 end
 in
 if {GoodEnough} then Guess
 else {SqrtIter {Improve} X} end
 end
in fun {Sqrt X}
 Guess = 1.0 in
 {SqrtIter Guess X}
 end
end

The program has a single
drawback: on each iteration two
procedure values are created, one
for Improve and one for
GoodEnough

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Sqrt final version
fun {Sqrt X}
 fun {Improve Guess}
 (Guess + X/Guess)/2.0
 end
 fun {GoodEnough Guess}
 {Abs X - Guess*Guess}/X < 0.000001
 end
 fun {SqrtIter Guess}
 if {GoodEnough Guess} then Guess
 else {SqrtIter {Improve Guess} } end
 end
 Guess = 1.0
in {SqrtIter Guess}
end

The final version is
a compromise between
abstraction and efficiency

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 24

From a general scheme
to a control abstraction (1)

fun {Iterate Si}
 if {IsDone Si} then Si

 else Si+1 in
 Si+1 = {Transform Si}

 {Iterate Si+1}
 end

end
•  IsDone and Transform are problem dependent

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 25

From a general scheme
to a control abstraction (2)

fun {Iterate S IsDone Transform}
 if {IsDone S} then S

 else S1 in
 S1 = {Transform S}
 {Iterate S1 IsDone Transform}
 end

end

fun {Iterate Si}
 if {IsDone Si} then Si

 else Si+1 in
 Si+1 = {Transform Si}
 {Iterate Si+1}
 end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 26

Sqrt using the Iterate abstraction
fun {Sqrt X}
 fun {Improve Guess}
 (Guess + X/Guess)/2.0
 end
 fun {GoodEnough Guess}
 {Abs X - Guess*Guess}/X < 0.000001
 end
 Guess = 1.0
in
 {Iterate Guess GoodEnough Improve}
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 27

Sqrt using the control abstraction
fun {Sqrt X}

 {Iterate
 1.0
 fun {$ G} {Abs X - G*G}/X < 0.000001 end

 fun {$ G} (G + X/G)/2.0 end
 }

end

Iterate could become a linguistic abstraction

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 28

Higher-order programming
•  Higher-order programming = the set of programming techniques that are

possible with procedure values (lexically-scoped closures)
•  Basic operations

–  Procedural abstraction: creating procedure values with lexical scoping
–  Genericity: procedure values as arguments
–  Instantiation: procedure values as return values
–  Embedding: procedure values in data structures

•  Control abstractions
–  Integer and list loops, accumulator loops, folding a list (left and right)

•  Data-driven techniques
–  List filtering, tree folding

•  Explicit lazy evaluation, currying
•  Higher-order programming is the foundation of component-based

programming and object-oriented programming

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 29

Procedural abstraction

•  Procedural abstraction is the ability to convert any
statement into a procedure value
–  A procedure value is usually called a closure, or more precisely, a

lexically-scoped closure
–  A procedure value is a pair: it combines the procedure code with

the environment where the procedure was created (the contextual
environment)

•  Basic scheme:
–  Consider any statement <s>
–  Convert it into a procedure value: P = proc {$} <s> end
–  Executing {P} has exactly the same effect as executing <s>

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 30

Procedural abstraction
fun {AndThen B1 B2}
 if B1 then B2 else false
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 31

Procedural abstraction
fun {AndThen B1 B2}
 if {B1} then {B2} else false
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 32

A common limitation
•  Most popular imperative languages (C, Pascal) do not have procedure values
•  They have only half of the pair: variables can reference procedure code, but there is no

contextual environment
•  This means that control abstractions cannot be programmed in these languages

–  They provide a predefined set of control abstractions (for, while loops, if statement)
•  Generic operations are still possible

–  They can often get by with just the procedure code. The contextual environment is often
empty.

•  The limitation is due to the way memory is managed in these languages
–  Part of the store is put on the stack and deallocated when the stack is deallocated
–  This is supposed to make memory management simpler for the programmer on systems that

have no garbage collection
–  It means that contextual environments cannot be created, since they would be full of dangling

pointers

•  Object-oriented programming languages can use objects to encode procedure
values by making external references (contextual environment) instance
variables.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 33

Genericity
•  Replace specific

entities (zero 0 and
addition +) by
function arguments

•  The same routine
can do the sum, the
product, the logical
or, etc.

fun {SumList L}
 case L
of nil then 0

 [] X|L2 then X+{SumList L2}
 end

end

fun {FoldR L F U}
 case L
of nil then U

 [] X|L2 then {F X {FoldR L2 F U}}
 end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 34

Instantiation

•  Instantiation is when a procedure returns a procedure value as its result
•  Calling {FoldFactory fun {$ A B} A+B end 0} returns a function that behaves identically

to SumList, which is an « instance » of a folding function

fun {FoldFactory F U}
 fun {FoldR L}
 case L

 of nil then U
 [] X|L2 then {F X {FoldR L2}}
 end
 end

in
 FoldR

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 35

Embedding
•  Embedding is when procedure values are put in data

structures
•  Embedding has many uses:

–  Modules: a module is a record that groups together a set of related
operations

–  Software components: a software component is a generic function
that takes a set of modules as its arguments and returns a new
module. It can be seen as specifying a module in terms of the
modules it needs.

–  Delayed evaluation (also called explicit lazy evaluation): build just
a small part of a data structure, with functions at the extremities
that can be called to build more. The consumer can control
explicitly how much of the data structure is built.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 36

Control Abstractions
declare
proc {For I J P}
 if I >= J then skip
 else {P I} {For I+1 J P}
 end
end

{For 1 10 Browse}

for I in 1..10 do {Browse I} end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 37

Control Abstractions
proc {ForAll Xs P}
 case Xs
 of nil then skip
 [] X|Xr then
 {P X} {ForAll Xr P}
 end
end

{ForAll [a b c d]
 proc{$ I} {System.showInfo "the item is: " # I} end}

for I in [a b c d] do
 {System.showInfo "the item is: " # I}
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 38

Control Abstractions
fun {FoldL Xs F U}
 case Xs
 of nil then U
 [] X|Xr then {FoldL Xr F {F X U}}
 end
end
Assume a list [x1 x2 x3]
S0 → S1 → S2
U → {F x1 U}→ {F x2 {F x1 U}} →→

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 39

Control Abstractions
fun {FoldL Xs F U}
 case Xs
 of nil then U
 [] X|Xr then {FoldL Xr F {F X U}}
 end
end

What does this program do ?
{Browse {FoldL [1 2 3]

 fun {$ X Y} X|Y end nil}}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 40

List-based techniques

fun {Map Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 {F X}|{Map Xr F}
 end
end

fun {Filter Xs P}
 case Xs
 of nil then nil
 [] X|Xr andthen {P X} then
 X|{Filter Xr P}
 [] X|Xr then {Filter Xr P}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 41

Tree-based techniques
proc {DFS Tree}
 case Tree of tree(node:N sons:Sons …) then

 {Browse N}
 for T in Sons do {DFS T} end
 end
end

proc {VisitNodes Tree P}
 case Tree of tree(node:N sons:Sons …) then

 {P N}
 for T in Sons do {VisitNodes T P} end
 end
end

Call {P T} at each node T

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 42

Explicit lazy evaluation
•  Supply-driven evaluation. (e.g.The list is completely

calculated independent of whether the elements are needed
or not.)

•  Demand-driven execution.(e.g. The consumer of the list
structure asks for new list elements when they are needed.)

•  Technique: a programmed trigger.
•  How to do it with higher-order programming? The

consumer has a function that it calls when it needs a new
list element. The function call returns a pair: the list
element and a new function. The new function is the new
trigger: calling it returns the next data item and another
new function. And so forth.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 43

Currying
•  Currying is a technique that can simplify programs that

heavily use higher-order programming.
•  The idea:function of n arguments ⇒ n nested functions of

one argument.
•  Advantage: The intermediate functions can be useful in

themselves.

fun {Max X Y}
 if X>=Y then X else Y end
end

fun {Max X}
 fun {$ Y}
 if X>=Y then X else Y end
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 44

Abstract data types
•  A datatype is a set of values and an associated set of

operations
•  A datatype is abstract only if it is completely described by

its set of operations regardless of its implementation
•  This means that it is possible to change the implementation

of the datatype without changing its use
•  The datatype is thus described by a set of procedures
•  These operations are the only thing that a user of the

abstraction can assume

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 45

Example: A Stack
•  Assume we want to define a new datatype 〈stack T〉 whose

elements are of any type T
fun {NewStack}: 〈Stack T〉
fun {Push 〈Stack T〉 〈T〉 }: 〈Stack T〉
fun {Pop 〈Stack T〉 〈T〉 }: 〈Stack T〉
fun {IsEmpty 〈Stack T〉 }: 〈Bool〉

•  These operations normally satisfy certain conditions:
{IsEmpty {NewStack}} = true
for any E and S0, S1={Push S0 E} and S0 ={Pop S1 E} hold
{Pop {NewStack} E} raises error

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 46

Stack (implementation)
fun {NewStack} nil end
fun {Push S E} E|S end
fun {Pop S E} case S of X|S1 then E = X S1 end end
fun {IsEmpty S} S==nil end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 47

Stack (another implementation)
fun {NewStack} nil end
fun {Push S E} E|S end
fun {Pop S E} case S of X|S1 then E = X S1 end end
fun {IsEmpty S} S==nil end

fun {NewStack} emptyStack end
fun {Push S E} stack(E S) end
fun {Pop S E} case S of stack(X S1) then E = X S1 end end
fun {IsEmpty S} S==emptyStack end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 48

Dictionaries
•  The datatype dictionary is a finite mapping from a set T to 〈value〉,

where T is either 〈atom〉 or 〈integer〉
•  fun {NewDictionary}

–  returns an empty mapping
•  fun {Put D Key Value}

–  returns a dictionary identical to D except Key is mapped to Value
•  fun {CondGet D Key Default}

–  returns the value corresponding to Key in D, otherwise returns
Default

•  fun {Domain D}
–  returns a list of the keys in D

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 49

Implementation
fun {Put Ds Key Value}
 case Ds
 of nil then [Key#Value]
 [] (K#V)|Dr andthen Key==K then
 (Key#Value) | Dr
 [] (K#V)|Dr andthen K>Key then
 (Key#Value)|(K#V)|Dr
 [] (K#V)|Dr andthen K<Key then
 (K#V)|{Put Dr Key Value}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 50

Implementation
fun {CondGet Ds Key Default}
 case Ds
 of nil then Default
 [] (K#V)|Dr andthen Key==K then
 V
 [] (K#V)|Dr andthen K>Key then
 Default
 [] (K#V)|Dr andthen K<Key then
 {CondGet Dr Key Default}
 end
end
fun {Domain Ds}
 {Map Ds fun {$ K#_} K end}
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 51

Further implementations
•  Because of abstraction, we can replace the dictionary ADT

implementation using a list, whose complexity is linear (i.e.,
O(n)), for a binary tree implementation with logarithmic
operations (i.e., O(log(n)).

•  Data abstraction makes clients of the ADT unaware (other
than through perceived efficiency) of the internal
implementation of the data type.

•  It is important that clients do not use anything about the
internal representation of the data type (e.g., using {Length
Dictionary} to get the size of the dictionary). Using only
the interface (defined ADT operations) ensures that
different implementations can be used in the future.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 52

Secure abstract data types:
Stack is not secure

fun {NewStack} nil end
fun {Push S E} E|S end
fun {Pop S E}

 case S of X|S1 then E=X S1 end
end
fun {IsEmpty S} S==nil end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 53

Secure abstract data types II
•  The representation of the stack is visible:

 [a b c d]

•  Anyone can use an incorrect representation, i.e., by passing

other language entities to the stack operation, causing it to
malfunction (like a|b|X or Y=a|b|Y)

•  Anyone can write new operations on stacks, thus breaking
the abstraction-representation barrier

•  How can we guarantee that the representation is invisible?

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 54

Secure abstract data types III

•  The model can be extended. Here are two ways:
–  By adding a new basic type, an unforgeable constant called a name
–  By adding encapsulated state.

•  A name is like an atom except that it cannot be typed in on
a keyboard or printed!
–  The only way to have a name is if one is given it explicitly

•  There are just two operations on names:
N={NewName} : returns a fresh name
N1==N2 : returns true or false

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 55

Secure abstract datatypes IV

proc {NewWrapper ?Wrap ?Unwrap}
 Key={NewName}
in
 fun {Wrap X}
 fun {$ K} if K==Key then X end end
 end
 fun {Unwrap C}
 {C Key}
 end
end

•  We want to « wrap » and « unwrap » values
•  Let us use names to define a wrapper & unwrapper

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 56

Secure abstract data types:
A secure stack

With the wrapper & unwrapper we can build a secure stack

local Wrap Unwrap in

 {NewWrapper Wrap Unwrap}
 fun {NewStack} {Wrap nil} end
 fun {Push S E} {Wrap E|{Unwrap S}} end
 fun {Pop S E}
 case {Unwrap S} of X|S1 then E=X {Wrap S1} end
 end
 fun {IsEmpty S} {Unwrap S}==nil end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 57

Capabilities and security
•  We say a computation is secure if it has well-defined and controllable

properties, independent of the existence of other (possibly malicious)
entities (either computations or humans) in the system

•  What properties must a language have to be secure?
•  One way to make a language secure is to base it on capabilities

–  A capability is an unforgeable language entity (« ticket ») that gives its
owner the right to perform a particular action and only that action

–  In our model, all values are capabilities (records, numbers, procedures,
names) since they give the right to perform operations on the values

–  Having a procedure gives the right to call that procedure. Procedures are
very general capabilities, since what they do depends on their argument

–  Using names as procedure arguments allows very precise control of rights;
for example, it allows us to build secure abstract data types

•  Capabilities originated in operating systems research
–  A capability can give a process the right to create a file in some directory

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 58

Secure abstract datatypes V
•  We add two new concepts to the computation model
•  {NewChunk Record}

–  returns a value similar to record but its arity cannot be inspected
–  recall {Arity foo(a:1 b:2)} is [a b]

•  {NewName}
–  a function that returns a new symbolic (unforgeable, i.e. cannot be

guessed) name
–  foo(a:1 b:2 {NewName}:3) makes impossible to access the third

component, if you do not know the arity

•  {NewChunk foo(a:1 b:2 {NewName}:3) }
–  Returns what ?

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 59

Secure abstract datatypes VI
proc {NewWrapper ?Wrap ?Unwrap}
 Key={NewName}
in
 fun {Wrap X}
 {NewChunk foo(Key:X)}
 end
 fun {Unwrap C}
 C.Key
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 60

Secure abstract data types:
Another secure stack

With the new wrapper & unwrapper we can build another secure stack
(since we only use the interface to wrap and unwrap, the code is
identical to the one using higher-order programming)

local Wrap Unwrap in

 {NewWrapper Wrap Unwrap}
 fun {NewStack} {Wrap nil} end
 fun {Push S E} {Wrap E|{Unwrap S}} end
 fun {Pop S E}
 case {Unwrap S} of X|S1 then E=X {Wrap S1} end
 end
 fun {IsEmpty S} {Unwrap S}==nil end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 61

Exercises

58. Modify the Pascal function to use local functions for
AddList, ShiftLeft, ShiftRight. Think about the
abstraction and efficiency tradeoffs.

59. CTM Exercise 3.10.2 (page 230)
60. CTM Exercise 3.10.3 (page 230)
61. Develop a control abstraction for iterating over a list of

elements.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 62

Exercises
62.  Implement the function {FilterAnd Xs P Q} that returns

all elements of Xs in order for which P and Q return true.
Hint: Use {Filter Xs P}.

63. Compute the maximum element from a nonempty list of
numbers by folding.

64. Suppose you have two sorted lists. Merging is a simple
method to obtain an again sorted list containing the
elements from both lists. Write a Merge function that is
generic with respect to the order relation.

65. CTM Exercise 3.10.17 (pg. 232). You do not need to
implement it using gump, simply specify how you would
add currying to Oz (syntax and semantics).

