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Advantages of  
concurrent programs 

•  Reactive programming 
–  User can interact with applications while tasks are running, e.g., stopping 

the transfer of a big file in a web browser. 
•  Availability of services 

–  Long-running tasks need not delay short-running ones, e.g., a web server 
can serve an entry page while at the same time processing a complex 
query. 

•  Parallelism 
–  Complex programs can make better use of multiple resources in new 

multi-core processor architectures, SMPs, LANs, WANs, grids, and 
clouds, e.g., scientific/engineering applications, simulations, games, etc. 

•  Controllability 
–  Tasks requiring certain preconditions can suspend and wait until the 

preconditions hold, then resume execution transparently. 
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Disadvantages of  
concurrent programs 

•  Safety 
–  « Nothing bad ever happens » 
–  Concurrent tasks should not corrupt consistent state of program 

•  Liveness 
–  « Anything ever happens at all » 
–  Tasks should not suspend and indefinitely wait for each other (deadlock). 

•  Non-determinism 
–  Mastering exponential number of interleavings due to different schedules. 

•  Resource consumption 
–  Threads can be expensive.  Overhead of scheduling, context-switching, 

and synchronization. 
–  Concurrent programs can run slower than their sequential counterparts 

even with multiple CPUs! 
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Overview of  
concurrent programming 

•  There are four basic approaches: 
–  Sequential programming (no concurrency) 
–  Declarative concurrency (streams in a functional language) 
–  Message passing with active objects (Erlang, SALSA) 
–  Atomic actions on shared state (Java) 

•  The atomic action approach is the most difficult, yet it is 
the one you will probably be most exposed to! 

•  But, if you have the choice, which approach to use? 
–  Use the simplest approach that does the job: sequential if that is ok, 

else declarative concurrency if there is no observable 
nondeterminism, otherwise use actors and message passing. 
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Actors/SALSA 
•  Actor Model  

–  A reasoning framework to model concurrent 
computations  

–  Programming abstractions for distributed open 
systems 

G. Agha, Actors: A Model of Concurrent Computation in Distributed 
Systems. MIT Press, 1986. 

Agha, Mason, Smith and Talcott, “A Foundation for Actor 
Computation”, J. of Functional Programming, 7, 1-72, 1997. 

•  SALSA 
–  Simple Actor Language System and 

Architecture 
–  An actor-oriented language for mobile and 

internet computing 
–  Programming abstractions for internet-based 

concurrency, distribution, mobility, and 
coordination 

C. Varela and G. Agha, “Programming dynamically reconfigurable 
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA 
2001, 36(12), pp 20-34. 



Agha, Mason, Smith & Talcott 
1.  Extend a functional language (λ-calculus + ifs and pairs) 

with actor primitives. 

2.  Define an operational semantics for actor configurations. 

3.  Study various notions of equivalence of actor expressions 
and configurations. 

4.  Assume fairness: 
–  Guaranteed message delivery. 
–  Individual actor progress. 
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Open Distributed Systems 

•  Addition of new components 

•  Replacement of existing components 

•  Changes in interconnections 
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Synchronous vs. Asynchronous 
Communication 

•  The π-calculus (and other process algebras such as CCS, 
CSP) take synchronous communication as a primitive. 

•  The actor model assumes asynchronous communication is 
the most primitive interaction mechanism. 
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Communication Medium 
•  In the π-calculus, channels are explicitly modeled. 

Multiple processes can share a channel, potentially causing 
interference. 

•  In the actor model, the communication medium is not 
explicit.  Actors (active objects) are first-class, history-
sensitive entities with an explicit identity used for 
communication. 
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Fairness 
•  The actor model theory assumes fair computations: 

1.  Message delivery is guaranteed. 
2.  Individual actor computations are guaranteed to progress. 

Fairness is very useful for reasoning about equivalences of 
actor programs but can be hard/expensive to guarantee;  
in particular when distribution and failures are 
considered. 
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λ-Calculus as a Model for 
Sequential Computation 

Syntax 
  e    ::=    v   value 
   |  λv.e   functional abstraction 
   | ( e   e )  application 

 
Example of beta-reduction: 
 
( λx.x2    2 ) 

        x2{2/x}     
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λ-Calculus extended with pairs 

•  pr(x,y)   returns a pair containing x & y 

•  ispr(x)   returns t if x is a pair; f otherwise 

•  1st(pr(x,y)) = x  returns the first value of a pair 

•  2nd(pr(x,y)) = y  returns the second value of a pair 
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Actor Primitives 

•  send(a,v)!
–  Sends value v  to actor a. 

•  new(b)!
–  Creates a new actor with behavior b (a λ-calculus abstraction) and 

returns the identity/name of the newly created actor. 

•  ready(b)!
–  Becomes ready to receive a new message with behavior b. 
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AMST Actor Language 
Examples 

b5 = rec(λy. λx.seq(send(x,5),ready(y))) 
receives an actor name x and sends the number 5 to that actor, 

then it becomes ready to process new messages with the 
same behavior y. 

 
Sample usage: 

 send(new(b5), a)!
 
A sink, an actor that disregards all messages: 

 sink = rec(λb. λm.ready(b))!
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Reference Cell 
cell = rec(λb.λc.λm. 

 if ( get?(m), 
  seq( send(cust(m), c), 

   ready(b(c))) 

  if ( set?(m), 

   ready(b(contents(m))), 

   ready(b(c))))) 

Using the cell: 
let a = new(cell(0)) in seq( send(a, mkset(7)), 

          send(a, mkset(2)), 
          send(a, mkget(c))) 
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Join Continuations 
Consider: 

 treeprod = rec(λf.λtree. 
    if(isnat(tree), 

       tree, 
       f(left(tree))*f(right(tree)))) 

 
which multiplies all leaves of a tree, which are numbers. 
 
You can do the “left” and “right” computations concurrently. 
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Tree Product Behavior 
Btreeprod = 

 rec(λb.λm. 
  seq(if(isnat(tree(m)), 

    send(cust(m),tree(m)), 

    let newcust=new(Bjoincont(cust(m))), 

    lp = new(Btreeprod), 

    rp = new(Btreeprod) in 
    seq(send(lp, 

    pr(left(tree(m)),newcust)), 

        send(rp, 

    pr(right(tree(m)),newcust)))), 

   ready(b))) 

C. Varela 17 



Tree Product (continued) 
 

 
Bjoincont = 

 λcust.ready( 

  λfirstnum.ready(λnum. 

   seq(send(cust,firstnum*num), 

       ready(sink)))) 
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Sample Execution 
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cust 

f(tree,cust) 

JC JC 

cust cust JC 

(a) (b) 

f(left(tree),JC) f(right(tree),JC) 



Sample Execution 
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cust 

JC’ JC’ 

JC 

cust JC 

firstnum 

(c) 

JC' 

JC 

firstnum 

firstnum 

JC' 

cust cust 
firstnum 

JC 

(d) 

JC’ 

f(left(tree),JC) 



Sample Execution 
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num 

Cust 

firstnum 

Cust 

JC 

(e) 

firstnum * num 

Cust 

(f) 



Operational Semantics for  
AMST Actor Language 

•  Operational semantics of actor model as a labeled 
transition relationship between actor configurations. 

•  Actor configurations model open system components: 

–  Set of individually named actors 

–  Messages “en-route” 
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Actor Configurations 
 

k =  α || µ  
 
α is a function mapping actor names (represented as free 

variables) to actor states. 
 
µ is a multi-set of messages “en-route.”  
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Syntactic restrictions on 
configurations 

 
Given A = Dom(α): 
 
•  If a in A, then fv(α(a)) is a subset of A. 

•  If  <a <= v> in µ, then {a} U fv(v) is a subset of A. 
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Labeled Transition Relation 
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Exercises 
70. Write  get? 

  cust 
  set? 
  contents 
  mkset 
  mkget 

to complete the reference cell example in the AMST actor 
language. 

71. Modify the cell behavior to notify a customer when the 
cell value has been updated. 

72. PDCS Exercise 4.6.6 (page 77). 
73. PDCS Exercise 4.6.7 (page 78). 
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