Logic Programming (PLP 11)

Predicate Calculus
Clocksin-Mellish Procedure
Horn Clauses

Carlos Varela Rennselaer Polytechnic Institute

January 29, 2015

Propositional Logic

- Assigning truth values to logical propositions.
- Formula syntax:

Truth Values

- To assign a truth values to a propositional formula, we have to assign truth values to each of its atoms (symbols).
- Formula semantics:

a	b	a ^ b	a v b	a ⇔ b	$a \Rightarrow b$	¬ a
False	False	F	F	Т	T	T
False	True	F	Т	F	Т	T
True	False	F	Т	F	F	F
True	True	T	T	T	T	F

Tautologies

- A *tautology* is a formula, true for all possible assignments.
- For example: ¬¬p ⇔ p
- The contrapositive law:

$$(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$$

• De Morgan's law:

$$\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$$

First Order Predicate Calculus

- Adds variables, terms, and (first-order) quantification of variables.
- Predicate syntax:

```
a ::= p(v_1, v_2, ..., v_n) predicate

f ::= a atom
v = p(v_1, v_2, ..., v_n) equality
v_1 = v_2
f \land f \mid f \lor f \mid f \Leftrightarrow f \mid f \Rightarrow f \mid \neg f
\forall v . f universal quantifier
\exists v . f existential quantifier
```

Predicate Calculus

- In mathematical logic, a *predicate* is a function that maps constants or variables to true and false.
- Predicate calculus enables reasoning about propositions.
- For example:

Quantifiers

- *Universal* (\forall) quantifier indicates that the proposition is true for **all** variable values.
- Existential (3) quantifier indicates that the proposition is true for at least one value of the variable.
- For example:

```
\forall A \forall B [(\exists C [ takes(A,C) \land takes(B,C)]) \Rightarrow classmates(A,B) ]
```

Structural Congruence Laws

$$P_{1} \Rightarrow P_{2} \equiv \neg P_{1} \vee P_{2}$$

$$\neg \exists X [P(X)] \equiv \forall X [\neg P(X)]$$

$$\neg \forall X [P(X)] \equiv \exists X [\neg P(X)]$$

$$\neg (P_{1} \wedge P_{2}) \equiv \neg P_{1} \vee \neg P_{2}$$

$$\neg (P_{1} \vee P_{2}) \equiv \neg P_{1} \wedge \neg P_{2}$$

$$\neg \neg P \equiv P$$

$$(P_{1} \Leftrightarrow P_{2}) \equiv (P_{1} \Rightarrow P_{2}) \wedge (P_{2} \Rightarrow P_{1})$$

$$P_{1} \vee (P_{2} \wedge P_{3}) \equiv (P_{1} \vee P_{2}) \wedge (P_{1} \vee P_{3})$$

$$P_{1} \wedge (P_{2} \vee P_{3}) \equiv (P_{1} \wedge P_{2}) \vee (P_{1} \wedge P_{3})$$

$$P_{1} \vee P_{2} \equiv P_{2} \vee P_{1}$$

Clausal Form

- Looking for a *minimal kernel* appropriate for theorem proving.
- Propositions are transformed into normal form by using structural congruence relationship.
- One popular normal form candidate is *clausal form*.
- Clocksin and Melish (1994) introduce a 5-step procedure to convert first-order logic propositions into clausal form.

Clocksin and Melish Procedure

- 1. Eliminate implication (\Rightarrow) and equivalence (\Leftrightarrow) .
- 2. Move negation (¬) inwards to individual terms.
- 3. *Skolemization*: eliminate existential quantifiers (∃).
- 4. Move universal quantifiers (∀) to top-level and make implicit, i.e., all variables are universally quantified.
- 5. Use distributive, associative and commutative rules of v, A, and ¬, to move into *conjuctive normal form*, i.e., a conjuction of disjunctions (or *clauses*.)

Example

```
\forallA [¬student(A) ⇒ (¬dorm_resident(A) ∧ ¬∃B [takes(A,B) ∧ class(B)])]
```

1. Eliminate implication (\Rightarrow) and equivalence (\Leftrightarrow) .

2. Move negation (\neg) inwards to individual terms.

```
∀A [student(A) v (¬dorm_resident(A) ∧

∀B [¬(takes(A,B) ∧ class(B))])]

∀A [student(A) v (¬dorm_resident(A) ∧

∀B [¬takes(A,B) v ¬class(B)])]
```

C. Varela

11

Example Continued

```
∀A [student(A) v (¬dorm_resident(A) ∧

∀B [¬takes(A,B) v ¬class(B)])]
```

- 3. Skolemization: eliminate existential quantifiers (∃).
- 4. Move universal quantifiers (∀) to top-level and make implicit, i.e., all variables are universally quantified.

5. Use distributive, associative and commutative rules of v, A, and ¬, to move into *conjuctive normal form*, i.e., a conjuction of disjunctions (or *clauses*.)

```
(student(A) v ¬dorm_resident(A)) ^
(student(A) v ¬takes(A,B) v ¬class(B))
```

Clausal Form to Prolog

```
(student(A) v ¬dorm_resident(A)) ^
(student(A) v ¬takes(A,B) v ¬class(B))
```

- 6. Use commutativity of v to move negated terms to the right of each clause.
- 7. Use $P_1 \vee \neg P_2 \equiv P_2 \Rightarrow P_1 \equiv P_1 \Leftarrow P_2$ (student(A) \Leftarrow dorm_resident(A)) \land (student(A) \Leftarrow \neg (\neg takes(A,B) \lor \neg class(B)))

8. Move Horn clauses to Prolog:

```
student(A) :- dorm_resident(A).
student(A) :- takes(A,B),class(B).
```

Skolemization

```
\existsX [takes(X,cs101) \land class_year(X,2)]
```

introduce a Skolem constant to get rid of existential quantifier (3):

```
takes(x,cs101) \wedge class year(x,2)
```

```
∀X [¬dorm_resident(X) v

∃A [campus address of(X,A)]]
```

introduce a Skolem function to get rid of existential quantifier (∃):

```
∀X [¬dorm_resident(X) v
          campus_address_of(X, f(X))
```

Limitations

- If more than one non-negated (positive) term in a clause, then it cannot be moved to a Horn clause (which restricts clauses to only one head term).
- If zero non-negated (positive) terms, the same problem arises (Prolog's inability to prove logical negations).
- For example:
 - « every living thing is an animal or a plant »

```
animal(X) v plant(X) v ¬living(X)
animal(X) v plant(X) ← living(X)
```

Exercises

- 4. What is the logical meaning of the second Skolemization example if we do not introduce a Skolem function?
- 5. Convert the following predicates into Conjunctive Normal Form, and if possible, into Horn clauses:
 - a) ∀C [rainy(C) ∧ cold(C) ⇒ snowy(C)]
 b) ∃C [¬snowy(C)]
 c) ¬∃C [snowy(C)]
- 6. PLP Exercise 11.5 (pg 571).
- 7. PLP Exercise 11.6 (pg 571).