FoCS: Exam 2 Review Questions

- 1. (Rosen 2.4: prob. 15) Show that the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2} + 2n 9$ if
 - (a) $a_n = 5 \cdot (-1)^n n + 2$
 - (b) $a_n = 7 \cdot 2^n n + 2$
- 2. For each of the recurrence relations below, write the solution without recursion.
 - (a) $a_n = a_{n-1} + 2$ with $a_0 = 4$
 - (b) $a_n = a_{n-1} + n$ with $a_0 = 5$
- 3. (Rosen 2.4: prob. 19) Suppose that the number of bacteria in a colony triples every hour.
 - (a) Set up a recurrence relation for the number of bacteria after n hours have elapsed.
 - (b) If 100 bacteria are used to begin a new colony, how many bacteria will be in the colony in 10 hours?
- 4. Find a closed formula for $\sum_{k=0}^{n} k(k+1)^2$.
- 5. Use mathematical induction to prove that $n^3 + 3n^2 + 2n$ is divisible by 3 for all integers $n \ge 1$.
- 6. Use mathematical induction to prove that $\sum_{j=1}^{n} \frac{1}{j^2} < 2 \frac{1}{n}$ for all integers n > 1.
- 7. Let $\{d_n\}$ be the sequence defined by $d_1 = 9/10$ $d_2 = 10/11$ $d_n = d_{n-1} \cdot d_{n-2}$ for $n \ge 3$ Use strong induction to show that $d_n \le 1$ for all $n \ge 1$.

8. What is wrong with the following proof by strong induction?

<u>Theorem</u>: For every non-negative integer n, 5n = 0.

Basis Step: $5 \cdot 0 = 0$.

Inductive Step: Assume that $5 \cdot j = 0$ for all non-negative integers j = 0, 1, ..., k. We will show that $5 \cdot (k+1) = 0$.

We can write k + 1 = i + j, where *i* and *j* are natural numbers strictly less than k + 1. By the inductive hypothesis, $5 \cdot i = 5 \cdot j = 0$, and thus

$$5 \cdot (k+1) = 5 \cdot (i+j) = 5i + 5j = 0.$$

- 9. (Rosen 5.3: prob. 9) Let F be the function such that F(n) is the sum of the first n positive integers. Give a recursive definition of F(n) for $n \ge 0$.
- 10. (Rosen 5.3: probs. 24 and 25) Give a recursive definition of
 - (a) the set of positive integer powers of 3.
 - (b) the set of positive integers not divisible by 5.
- 11. List five elements of the set S of strings with the following recursive definition.

 $\begin{array}{l} 10 \in S \\ \text{if } w \in S \text{ then } w10 \in S \end{array}$

12. (Rosen 5.2: prob. 39) When does a string belong to the set A of bit strings defined recursively by

 $\lambda \in A$ if $x \in A$ then $0x1 \in A$

- 13. (Rosen 5.4: probs. 7 and 21) Give a recursive algorithm for computing nx where n is a positive integer and x is an integer, just using addition. Then, using induction, prove your algorithm is correct.
- 14. State the answer for each of the following counting problems.
 - (a) How many bit strings (strings of zeros and ones) of length 14 contain exactly three ones?
 - (b) How many bit strings (strings of zeros and ones) of length 14 contain at most three ones?
 - (c) In how many ways can a photographer at a wedding arrange six people in a row, including the bride and the groom, if the bride must be next to the groom?
- 15. There are 800,000 pine trees in a forest. Each pine tree has no more than 600,000 needles. Show that at least two trees have the same number of needles.
- 16. (Rosen 6.4: prob. 9) What is the coefficient of $x^{101}y^{99}$ in the expansion of $(2x 3y)^{200}$?
- 17. Let f be a function that maps from $\{1, 2, \dots n\}$ to $\{0, 1, 2, \dots n\}$.
 - (a) How many such functions are there?
 - (b) How many of these functions are injective?
 - (c) How many of these functions are surjective?
- 18. How many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 = 17$?