Proving Equalities

Goal: to become familiar with *equational proofs* as a type of inference.

- numeric equations
- equality chaining
- terms and sentences as trees
- logic behind equality chaining
- sample proofs
- mathematical induction
- *list equations*
- *polymorphic datatypes*
- *ground terms*
- *top-down proof development*
Datatype for natural numbers

datatype N := zero | (S N)

This defines a datatype N with two constructors: zero and S. The definition says that the values of sort N are:

<table>
<thead>
<tr>
<th>zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S zero)</td>
</tr>
<tr>
<td>(S (S zero))</td>
</tr>
<tr>
<td>(S (S (S zero)))</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

- 0 is represented by zero,
- \(n + 1 \) is obtained by applying the “successor function” S to the natural number \(n \),
- these are the only values that are natural numbers.
Functions over natural numbers

\[
\text{declare Plus: } [N N] \rightarrow N [+]
\]

- Plus takes two natural numbers as inputs and produces a natural number as output.
- The expression \([+]\) at the end of the declaration overloads the built-in symbol + so that it can be used as an alias for Plus whenever the context allows it.

We can now write the following equivalent terms:

\[
\begin{align*}
(\text{Plus (S zero) zero}) \\
((\text{S zero}) \text{ Plus zero}) \\
(\text{S zero Plus zero)} \\
(\text{S zero + zero})
\end{align*}
\]

after setting the precedence of S to be higher than Plus.
Reasoning about functions

We can express commutativity of addition as follows:

```
> (forall n m . n Plus m = m Plus n)
```

Sentence:

```
(forall ?n:N

(forall ?m:N

  (= (Plus ?n:N ?m:N)

    (Plus ?m:N ?n:N))))
```

Axioms for + can be added to the global assumption base using universally quantified equations:

```
assert right-zero := (forall n . n + zero = n)
```

```
assert right-nonzero := (forall n m . n + S m = S (n + m))
```
Instantiating axioms

The meaning of \((S \text{ zero } + \text{ zero})\) is determined by the equation that is just the special case of right-zero with the ground term \((S \text{ zero})\) substituted for \(n\).

\[
(!\text{instance right-zero } [(S \text{ zero})])
\]

to which Athena responds:

<table>
<thead>
<tr>
<th>Theorem: ((= (\text{Plus } (S \text{ zero})\text{ zero}) (S \text{ zero})))</th>
</tr>
</thead>
</table>

That is, \(1 + 0 = 1\). Likewise:

\[
> (\text{instance right-nonzero } [\text{zero } (S \text{ zero})])
\]

| Theorem: \((= (\text{Plus } \text{ zero}
(S (S \text{ zero}))) (S (\text{Plus } \text{ zero}
(S \text{ zero}))))\)
The instance method

- The first argument to instance is a universally quantified sentence p in the assumption base.
- The second is a list L of terms.

If $p = (\forall v_1 \cdots v_n . q)$ and $L = [t_1 \cdots t_k]$, where $k \leq n$, then instance produces the sentence

$$(\forall v_{k+1} \cdots v_n . q')$$

where q' results from substituting t_i for v_i in q, for $i = 1, \ldots, k$.

> (!instance right-nonzero [zero])

Theorem: $$(\forall v_303:\mathbb{N}

(= (\text{Plus} \text{ zero}

(S ?v303:\mathbb{N}))

(S (\text{Plus} \text{ zero} ?v303:\mathbb{N}))))$$
Equality chaining

What about the meaning of Plus for larger ground term inputs, like

\[(S \ S \ \text{zero} + S \ S \ \text{zero})\]?

In other words, can we now deduce that \(2 + 2 = 4\)?

Yes, and here is one way to do it:

\[
(!\text{chain }[(S \ S \ \text{zero} + S \ S \ \text{zero})
\begin{array}{c}
= (S (S \ S \ \text{zero} + S \ \text{zero})) \\
= (S \ S (S \ S \ \text{zero} + \ \text{zero})) \\
= (S \ S \ S \ \text{zero})
\end{array}
\right\]_{\text{right-zero}}]

Here we have used chain, an Athena method for proving equations by chaining together a sequence of terms connected by equalities.
The chain method

In general,

\[
(!\text{chain } [t_0 = t_1 [p_1] = t_2 [p_2] = \cdots = t_n [p_n]])
\]

- attempts to derive the identity \((t_0 = t_n)\),
- each \(p_i\) must be in the assumption base and
- each equation \((t_{i-1} = t_i)\) must follow from \(p_i\), typically by one of five fundamental axioms of equality, for \(i = 1, \ldots, n\):
 - reflexivity
 - symmetry
 - transitivity
 - functional substitution, or
 - relational substitution
Equality chaining

(!chain [(S S zero + S S zero)
= (S (S S zero + S zero)) [right-nonzero]
= (S S (S S zero + zero)) [right-nonzero]
= (S S S S zero) [right-zero]])

• \(n = 3 \),
• \(p_1 = p_2 = \text{right-nonzero} \) and \(p_3 = \text{right-zero} \),
• Athena responds with the theorem proved:

\[
\text{Theorem}: (\mathbin{=} (\text{Plus} (S (S \text{ zero})) (S (S \text{ zero}))))
\]

For each step \(i \) (from \(t_{i-1} \) to \(t_i \)), \([p_i]\) is its justification list and each \(p_i \) is its justifier.
The logic behind equality chaining

A firm foundation for reasoning about equalities is provided by the basic equality axioms:

1. **Reflexivity:** $\forall x . x = x$.

2. **Symmetry:** $\forall x y . x = y \Rightarrow y = x$.

3. **Transitivity:** $\forall x y z . x = y \land y = z \Rightarrow x = z$.

4. **Functional Substitution:** For any n-arity function symbol f,
 \[
 \forall x_1 \cdots x_n y_1 \cdots y_n . x_1 = y_1 \land \ldots \land x_n = y_n \Rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n).
 \]

5. **Relational Substitution:** For any n-arity relation symbol R,
 \[
 \forall x_1 \cdots x_n y_1 \cdots y_n . x_1 = y_1 \land \ldots \land x_n = y_n \land R(x_1, \ldots, x_n) \Rightarrow R(y_1, \ldots, y_n).
 \]
Terms and sentences as trees

Terms and sentences are tree-structured objects.

- A variable or a constant symbol can be viewed as a simple one-node tree (a leaf node)
- An application of the form \((f \, t_1 \, \cdots \, t_n)\) for \(n > 0\) can be viewed as a tree with
 - the symbol \(f\) at the root and
 - with the trees corresponding to \(t_1, \ldots, t_n\) as its immediate subtrees, arranged from left to right in that order.
Terms and sentences as trees

The term \((\text{Plus} \ (S \ \text{zero}) \ (\text{Plus} \ (S \ x) \ (S \ y)))\) can be depicted as follows:
Abstract syntax

Tree representations of terms depict their *abstract syntax*:

- not specified whether prefix, infix, or postfix notation was used
- no argument separation syntax (e.g., commas, periods, spaces, indentation, etc.)
- these belong to a *concrete syntax*, e.g., Lisp prefix notation is used by Athena to output terms.
Dewey paths

Every node can be assigned a unique list of positive integers $[i_1 \cdots i_m]$ indicating the path that must be traversed in order to get from the root of the tree to the node in question, e.g., for (Plus (S zero) (Plus x y)):

These integer sequences are called *Dewey paths* (or Dewey positions).
Computing with Dewey paths

The Athena procedure `positions-and-subterms`

- takes a term and
- produces a list of all positions in the term, each paired in a sublist with the subterm at that position.

For example:

```
> (positions-and-subterms (Plus (S zero) (Plus x y)))
```

List: `[[[] (Plus (S zero) (Plus ?x ?y))]
[[1] (S zero)]
[[1 1] zero]
[[2] (Plus ?x ?y)]
[[2 1] ?x]
[[2 2] ?y]]`

Computing with Dewey paths

subterm is a useful procedure that

- takes a term t and
- a position I (as a list of positive integers) and
- returns the subterm of t that is located at position I in the tree representation of t.

```
define (subterm t I) :=
  match I {
  [] => t
  | (list-of i rest) => (subterm (ith (children t) i) rest)
  }
```

The primitive binary procedure `ith` takes a list of $n > 0$ values $[V_1 \cdots V_n]$ and an integer $i \in \{1, \ldots, n\}$ and returns V_i.
Computing with Dewey paths

If we only want the node at a given position, we can use the following procedure: subterm-node

\[
\text{define (subterm-node } \ t \ I) := (\text{root (subterm } \ t \ I))
\]

\[
> (\text{subterm-node } (x + S S \text{ zero}) [2 1])
\]

Symbol: S

Another useful procedure is replace-subterm, where

\[(\text{replace-subterm } \ t \ I \ t')\]

- returns the term obtained from \(t\) by replacing the subterm at position \(I\) by \(t'\),
- provided that the result is well sorted.
- **Exercise:** Define the replace-subterm procedure.
Sentences as trees

Dewey paths also apply to sentences depicted as trees, e.g.:

(forall ?x (not (= zero (S ?x))))
More examples of equality chaining

We begin with the following property:

```define left-zero := (forall n . zero + n = n)```

which differs from `right-zero` in that `zero` appears as the first input to `Plus` rather than the second.

Recall we called it `Plus-S-property` in Chapter 1 (see induction.ath). Similarly:

```assert left-nonzero := (forall m n . (S n) + m = S (n + m))```

We are treating `left-nonzero` as an axiom (we used `assert`) though it can be proven from `right-zero` and `right-nonzero.`
More examples of equality chaining

A multiplication function, Times, takes two natural numbers as inputs and returns their product:

```
declare Times: [N N] -> N [*]
```

We overloaded * to mean Times when applied to N arguments.

Next, the semantics:

```
assert Times-zero := (forall x . x * zero = zero)
assert Times-nonzero := (forall x y . x * S y = x * y + x)
```

If we read \((S \ n)\) as \(n + 1\), the second axiom just says

\[
x \cdot (y + 1) = x \cdot y + x.
\]

Note that * has a built-in precedence greater than that of +, so that, for example, \((x \ * \ y + z)\) is parsed as \(((x \ * \ y) + z)\).
More examples of equality chaining

Let’s also introduce a name one and give its meaning with an equation:

```plaintext
declare one: N
assert one-definition := (one = S zero)
```

The proof of the following property:

```plaintext
define Times-right-one := (forall x . x * one = x)
```

provides another simple illustration of equality chaining:

```plaintext
conclude Times-right-one

  pick-any x:N

  (!chain [(x * one)
               = (x * S zero)  [one-definition]
               = (x * zero + x) [Times-nonzero]
               = (zero + x) [Times-zero]
               = x [left-zero]])
```
More examples of equality chaining

Associativity of Times, which for the moment we will treat as an axiom:

```plaintext
assert Times-associative := (forall x y z . (x * y) * z = x * (y * z))
```

An exponentiation function, **, follows:

```plaintext
declare **: [N N] -> N [310]
```

We set the precedence of ** higher than that of * (predefined as 300).

For semantics, we write:

```plaintext
assert Power-right-zero := (forall x . x ** zero = one)
```

```plaintext
assert Power-right-nonzero := (forall x n . x ** S n = x * x ** n)
```

or

\[x^{n+1} = x \cdot x^n \]

Power square theorem

Recall the following result from elementary algebra: \((x^2)^n = x^{2n}\)

```define power-square-theorem := (forall n x . (x * x) ** n = x ** (n + n))```

If we define the following procedure:

```define (power-square-property n) := (forall x . (x * x) ** n = x ** (n + n))```

we can express `power-square-theorem` as the proposition that every natural number has the `power-square-property`:

\[(forall n . power-square-property n)\]

Athena can verify that the two formulations are identical:

```
> (power-square-theorem equals? (forall n . power-square-property n))
 Term: true
```

We call `power-square-property` a *property procedure*.
Power square theorem

So how do we go about proving power-square-theorem? For this theorem, instantiating only the variable \(n \) for a few small values yields:

\[
\begin{align*}
\forall x . (x * x) ^ 0 &= x ^ 0 (0 + 0) \\
\forall x . (x * x) ^ 1 &= x ^ 1 (0 + 1) \\
\forall x . (x * x) ^ 2 &= x ^ 2 (0 + 2) \\
\forall x . (x * x) ^ 3 &= x ^ 3 (0 + 3) \\
\vdots
\end{align*}
\]
Power square theorem

The proof of \((\text{power-square-property zero})\) is simple:

Conclude \(\text{power-zero-case} := (\text{power-square-property zero})\)

Pick any \(x : \mathbb{N}\)

(!chain [((x * x) ** zero) = one][Power-right-zero]

= (x ** zero)[Power-right-zero]

= (x ** (zero + zero))[right-zero])
Power square theorem

For \(n \equiv (S \text{ zero}) \), first consider the following proof:

| \begin{align*}
& \text{conclude power-one-case := (power-square-property (S zero))} \\
& \text{pick-any } x: N \\
& \text{(!combine-equations} \\
& \text{(!chain [((x * x) ** S zero)} \\
& \quad = ((x * x) * (x * x) ** zero) \quad \text{[Power-right-nonzero]} \\
& \quad = ((x * x) * one) \quad \text{[Power-right-zero]} \\
& \quad = (x * x) \quad \text{[Times-right-one]]])} \\
& \text{(!chain [(x ** (S zero + S zero))} \\
& \quad = (x ** (S (S zero + zero))) \quad \text{[right-nonzero]} \\
& \quad = (x ** (S S zero)) \quad \text{[right-zero]} \\
& \quad = (x * (x ** S zero)) \quad \text{[Power-right-nonzero]} \\
& \quad = (x * (x * (x ** zero))) \quad \text{[Power-right-nonzero]} \\
& \quad = (x * x * one) \quad \text{[Power-right-zero]} \\
& \quad = (x * x) \quad \text{[Times-right-one]]]))
\end{align*} |
Power square theorem

The structure of this proof, combines two applications of chain:

\[
\begin{align*}
t_0 &\xrightarrow{\text{t}} t_1 & u_0 &\xrightarrow{\text{u}} u_1 \\
\cdots & & \cdots \\
t_n &= u_m
\end{align*}
\]

If we can rewrite each side of the equation to the very same term, then we can combine the two chain conclusions to obtain the proof.
The combine-equations method

The method combine-equations does just that:

\(!\text{combine-equations } (s_0 = s_n) \ (t_0 = t_m)!!

proves \((s_0 = t_0)!! when

- both \((s_0 = s_n)!! and \((t_0 = t_m)!! are in the assumption base and
- \(s_n!! and \(t_m!! are identical.

chain allows the direction of rewriting to be indicated on each step:

- If --> is used, chain only attempts to rewrite left-to-right:
 \(t_i \rightarrow t_{i+1}!!.
- If <-- is used, it only attempts to rewrite right-to-left:
 \((t_{i+1} \rightarrow t_i)!!.
- If = is specified, chain first tries left-to-right, and if that fails, it tries right-to-left.
Power square theorem

The proof given for power-one-case can be shortened by taking advantage of the power-zero-case theorem, as follows:

\[
\text{conclude } (\forall x . (x \times x)^{S \text{ zero}} = x^S (\text{ zero } + \text{ zero}))
\]

pick-any \(x: \text{N} \)

(!combine-equations

(!chain \[((x \times x)^{S \text{ zero}}) \rightarrow ((x \times x) \times ((x \times x)^{\text{ zero}})) \]

[Power-right-nonzero]

\(\rightarrow ((x \times x) \times (x^{\text{ zero } + \text{ zero}})) \)

[power-zero-case]

\(\rightarrow (x \times x \times x^{\text{ zero } + \text{ zero}}) \)

[Times-associative]]

(!chain \[(x^{(S \text{ zero } + \text{ zero})}) \rightarrow (x^{(S (\text{ zero } + \text{ zero}))}) \]

[right-nonzero]

\(\rightarrow (x^{(S (\text{ zero } + \text{ zero}))}) \)

[left-nonzero]

\(\rightarrow (x \times (x^{(S (\text{ zero } + \text{ zero}))})) \)

[Power-right-nonzero]

\(\rightarrow (x \times x \times x^{(\text{ zero } + \text{ zero}})) \)

[Power-right-nonzero]]

This proof is not just shorter, it can be generalized for any value of \(n \).
Power square theorem

define power-square-step :=
 method (n)
 let {previous-result := (power-square-property n)}
 conclude (power-square-property (S n))
 pick-any x:N
 (!combine-equations
 (!chain [((x * x) ** S n)
 --> ((x * x) * ((x * x) ** n)) [Power-right-nonzero]
 --> ((x * x) * (x ** (n + n))) [previous-result]
 --> (x * x * (x ** (n + n))) [Times-associative]])
 (!chain [(x ** (S n + S n))
 --> (x ** (S (S n + n))) [right-nonzero]
 --> (x ** (S S (n + n))) [left-nonzero]
 --> (x * (x ** (S (n + n)))) [Power-right-nonzero]
 --> (x * x * (x ** (n + n))) [Power-right-nonzero]])

if we apply power-square-step to n, we obtain theorem

(power-square-property (S n))
Power square theorem

Encapsulating the $n \equiv 0$ case in a separate method, `power-square-base`:

```plaintext
define power-square-base :=
  method ()
  conclude (power-square-property zero)
  pick-any x:N
   (!chain [((x * x) ** zero)
   = one [Power-right-zero]
   = (x ** zero) [Power-right-zero]
   = (x ** (zero + zero)) [right-zero]])
```

The following sequence of calls could be extended to obtain the proof of `(power-square-property n)` for *any* natural number n:

```plaintext
(!power-square-base)
(!power-square-step zero)
(!power-square-step ($S$ zero))

...```
The principle of mathematical induction

To prove $\forall n . P(n)$ where $n$ ranges over the natural numbers, it suffices to prove:

1. **Basis case**: $P(0)$.
2. **Induction step**: $\forall n . P(n) \Rightarrow P(n + 1)$.

In the induction step, the antecedent assumption $P(n)$ is called the *induction hypothesis*. 

The by-induction proof construct

This principle is embodied in Athena’s by-induction proof construct. We can use it to prove power-square-theorem as follows:

\[
\text{by-induction power-square-theorem}\
\{\
  \text{zero} \Rightarrow (!\text{power-square-base})\\
  | (S \, n) \Rightarrow (!\text{power-square-step} \, n)\
\}\]

The keyword by-induction is followed by the sentence to be derived, which is a goal of the form

\[\forall \, n : N . \, P(n),\]

followed by a number of clauses, enclosed in curly braces and separated by |, expressing the cases that together are sufficient to complete the proof.
The by-induction proof construct

There are usually two clauses (there can be more):

• one that expresses the basis case, corresponding to $P(0)$, and
• the other expressing the induction step (or “inductive step”),
corresponding to

$$\forall n. \, P(n) \Rightarrow P(n + 1).$$

Each clause is essentially a pair consisting of

• a constructor pattern $\pi_i$ that represents one of the cases of the
inductive argument, and
• a corresponding subproof $D_i$.

The arrow keyword $\Rightarrow$ separates $\pi_i$ from $D_i$.
The subproof $D_i$ will be evaluated in the original assumption base
*augmented with all appropriate inductive hypotheses.*
**Power square theorem**

The induction-step sentence for our example can be written in Athena as follows:

\[(\forall n . \text{power-square-property } n \Rightarrow \text{power-square-property } (S\ n))\]

If we were trying to prove this sentence from scratch, without the benefit of by-induction, we could do it with a proof along the following lines:

- **pick-any** \(n: N\)
- **assume** induction-hypothesis := \((\text{power-square-property } n)\)
- **conclude** \((\text{power-square-property } (S\ n))\)
- \((\neg\text{power-square-step } n)\)

But with by-induction it is not necessary to write this much detail: pick-any, assume, and conclude are implicit.
A schema for inductive proofs

# Start by defining a unary `property procedure':

```plaintext
define (P t) := ...
```

# Then use it to define a goal which says that every object has this property:

```plaintext
define goal := (forall n:N . P n)
```

# Finally, prove the goal by induction:

```plaintext
by-induction goal {
 zero => conclude (P zero)
 (!basis-case ...)
 | (n as (S m)) =>
 conclude (P n) # Here the assumption base contains
 (!induction-step ...) # the inductive hypothesis (P m).
}
```
A simpler proof by induction

Recall the left-zero property that we defined earlier:

```latex
define left-zero := (forall n . zero + n = n)
```

Here is a proof using by-induction:

```latex
by-induction left-zero {
 zero => conclude (zero + zero = zero)

 (!chain [(zero + zero) --> zero [right-zero]])

| (n as (S m)) =>
 conclude (zero + n = n)

 let {induction-hypothesis := (zero + m = m)}

 (!chain [(zero + S m)

 --> (S (zero + m)) [right-nonzero]

 --> (S m) [induction-hypothesis]])
}
```