A Binary Search Algorithm

Goal: to introduce reasoning about algorithms using a binary search algorithm as an example.

- defining the algorithm
- first correctness properties
- correctness of an optimized binary search algorithm
Defining the algorithm

Binary search is an algorithm capable of searching a binary tree containing \(n \) items with only \(O(\log n) \) comparisons, assuming the tree is balanced.

- Roughly speaking, balanced means that each path from the root to a leaf node is about \(\log_2 n \) in length.

To define the binary search function on binary trees of natural numbers, we start as usual with its declaration:

```extend-module BinTree {

define [x y z T L R] :=

declare binary-search: [N (BinTree N)] -> (BinTree N)

module binary-search {
    # ...
```
Defining the algorithm

To define how binary-search is computed, we call upon a library procedure named `fun` to translate a simpler input into defining axioms:

```scheme
assert axioms :=
    (fun
        [(binary-search x (node L y R)) =
            [(node L y R) when (x = y)]
            (binary-search x L) when (x < y)
            (binary-search x R) when (x /= y & ~x < y)]
        (binary-search x null) = null)

define [at-root go-left go-right empty] := axioms
```
Defining the algorithm

The effect of the assert of the fun together with the define is exactly the same as if we had written

```plaintext
code
assert* at-root :=
  (x = y ==> (binary-search x (node L y R)) = (node L y R))

assert* go-left :=
  (x < y ==> (binary-search x (node L y R)) = (binary-search x L))

assert* go-right :=
  (x /= y & ~ x < y
   ==> (binary-search x (node L y R)) = (binary-search x R))

assert* empty := ((binary-search x null) = null)
```
The \texttt{fun} procedure

The procedure \texttt{fun} is used to define either a predicate or a nonpredicate. In either case, it takes one argument, a list containing \textit{defining clauses}, and translates it into a list $[s_1 \ldots s_k]$ where each s_i is a sentence.

- A defining clause for a nonpredicate function f is a triplet (three consecutive list elements):
 - a term l of the form $(f \ t_1 \ldots \ t_n)$, called a \textit{left-hand-side} term;
 - the symbol $=$; and
 - a \textit{right-hand-side} term or list.

- In the left-hand-side term, the number of arguments n must be the same as f’s arity, and each argument t_i must be either a variable or a term of the sort required by f’s i^{th} argument position (so that the whole term is legal).
The fun procedure

• In the case of a right-hand-side term \(r \), \(r \) must be a term whose sort is the return sort of \(f \) and the corresponding sentence is the closure of \((l = r) \).

• In the case of a right-hand-side list, it must consist of a sequence of triplets, each triplet consisting of a right-hand-side term \(r \), followed by the meta-identifiers 'when, followed by a guard \(p \). For each such triplet, the corresponding sentence is the closure of \((p \Rightarrow l = r) \). (We can allow writing when instead of 'when with define when := 'when.)
The fun procedure

The fun syntax is similar to multipart definitions in conventional mathematical notation, where one might write, e.g.,

\[
\text{binary-search}(x, \text{node}(L, y, R)) = \begin{cases}
\text{node}(L, y, R) & \text{where } x = y \\
\text{binary-search}(x, L) & \text{where } x < y \\
\text{binary-search}(x, R) & \text{otherwise}
\end{cases}
\]

Instead of “otherwise”, we write explicitly “where \(x \neq y\) and \(\sim x < y\)”.
The fun procedure

Writing the third condition as the conjunction of the negations of the preceding conditions, makes it explicit that the condition is disjoint from all of the previous ones. This helps with proof structures such as:

```plaintext
(!two-cases
  assume (x = y)
  # here at-root can be applied
  ...
  assume (x /= y)

  (!two-cases
    assume (x < y)
    # here go-left can be applied, since (x < y) is
    # in the assumption base
    ...
    assume (~ x < y)
    # here go-right can be applied, since both (x /= y)
    # and (~ x < y) are now in the assumption base
    ...
  )
)
```
Efficiency considerations

While the order of presentation makes no difference for the use of axioms in proofs, it can have a significant effect on efficiency when the axioms are used for computation. In Athena, axioms defining a function f are compiled into code by the name f or f`. Let’s look at the code that is compiled from the axioms generated by our fun definition of binary-search:

```plaintext
define (binary-search t1 t2) :=
match [t1 t2] {
    [x3 (node x1 x4 x2)] =>
        check { (= x3 x4) => (node x1 x4 x2)
            | (N.Less.< x3 x4) => (binary-search x3 x1)
            | else => (binary-search x3 x2)
        }
    | [x1 null:(BinTree N)] => null:(BinTree N)
}
```
Efficiency considerations

- The axioms have been compiled into a match expression with two clauses, one for each of the two constructors of the BinTree datatype, which constitute a case analysis for the structure of the second argument to binary-search.

- The clause corresponding to the node constructor includes a further case analysis implemented by a check, which first tests whether the key is equal to the root value, and then whether it is less than it.

- But note that the last clause of the check expression does not include a proper condition, having a catch-all else guard instead.
Efficiency considerations

- Whereas a completely straightforward translation of the corresponding clause of the fun definition, namely

\[(\text{binary-search } x \ R) \text{ when } (x \neq y \land \neg x < y)\]

would result in:

\[
\begin{align*}
\text{check } \{&(\text{=} \ `x3` \ `x4`) \Rightarrow (\text{node } `x1` \ `x4` \ `x2`) \\
| \ (\text{N.Less.<} \ `x3` \ `x4`) \Rightarrow (\text{binary-search` `x3` `x1}) \\
| \ (\&\& (\text{negate } (\text{=} \ `x3` \ `x4)) \ (\text{negate } (\text{N.Less.<} \ `x3` \ `x4)))) \Rightarrow \\
\text{ (binary-search` `x3` `x2})
\end{align*}
\]

- But because each conjunct in the last guard negates a condition already tested in previous clauses, the guard simplifies to

\[(\&\& \text{ true \ true}) \], and thus it can be replaced by else.
Efficiency considerations

- These simplifications depend on the order of the given conditions.
- For most purposes, the following guarantees about the compiled Athena code suffice:
 1. the order in which check clauses (or potentially match clauses with where guards) are listed is the same as the order in which the axioms with the corresponding conditions are presented; and
 2. each guard in a clause is simplified by removing the negation of any guard of a preceding clause.
- These guarantees ensure that lines in a fun serve, for purposes of computation, essentially like an “if-then-else” or “cond” construct in conventional high-level languages.
Correspondence to other languages

In a programming language that allows datatype constructor patterns as formal parameters of function definitions, such as ML or Haskell, one can write the binary search definition similarly to using `fun`, e.g., in ML:

```ml
datatype BinTree = null | node of BinTree * int * BinTree
fun binarySearch(x,node(L,y,R)) =
    if x = y then
        node(L,y,R)
    else if x < y then
        binarySearch(x,L)
    else
        binarySearch(x,R)
| binarySearch(x,null) = null
```
Correspondence to other languages

In languages which lack such pattern matching, we would be restricted to using only variables as formal parameters. Then, in the body of the function, we would need to replace occurrences of pattern variables with the corresponding accessor function call or other component access notation, e.g., in C++:

```c++
struct node;
typedef node* BinTree;

struct node {
    BinTree left; int key; BinTree right;
    node(BinTree L, int y, BinTree R) :
        left(L), key(y), right(R) {}
};
```
BinTree binarySearch(int x, BinTree T)
{
 if (T == NULL)
 return NULL;
 if (x == T->key)
 return T;
 if (x < T->key)
 return binarySearch(x, T->left);
 return binarySearch(x, T->right);
}

Note that in this case, the test for the empty tree must be done first, since otherwise the expression T->key, etc., would cause an error when T is a null pointer.
Interface design

- One additional factor in algorithm design is the interface.
- In the case of binary-search, it would be simpler to return a Boolean value, true if the target value is found, false otherwise. (Most significantly, that interface would make some of the issues we have to deal with in the upcoming proofs disappear.)
- By returning a node or null, however, we still have an easy test for success—((binary-search x T) /= null)—and we make it possible to continue with other computations at the position in the tree where the search value is found, without recomputing that position.
Binary search trees

A sample binary tree with Int elements follows:

```
define tree1 :=
  (node (node null
          2
        (node (node null
            3
        null)
      5
    null))
  7
(node (node null
          11
        null)
  13
null))
```
Testing with evaluation

We can use input expansion and output transformation to work with trees such as the one defined earlier.

```
expand-input binary-search [int->nat int-tree->nat-tree]
transform-output eval [nat-tree->int-tree]
```

```
> (eval (binary-search 5 tree1))
```

Term: `node (node null:(BinTree Int) 3 null:(BinTree Int)) 5 null:(BinTree Int))`

```
> (eval (binary-search 12 tree1))
```

Term: `null:(BinTree Int)`
First correctness properties

The first correctness properties we consider concern what the result returned by \((\text{binary-search } x \ T)\) implies about the presence or absence of \(x\) in \(T\).

```text
extend-module binary-search {

  define found :=
  (forall T . BST T =>>
    (forall x L y R . (binary-search x T) = (node L y R) =>>
      x = y & x in T))

  define not-found :=
  (forall T . BST T =>>
    (forall x . (binary-search x T) = null =>> ~ x in T))

}```
First correctness properties

The proof of found is by induction on binary trees, with basis case:

```plaintext
define tree-axioms := (datatype-axioms "BinTree")

define (binary-search-found-base) :=
 conclude (BST null =>
 forall x L y R .
 (binary-search x null) = (node L y R)
 ==> x = y & x in null)

assume (BST null)

pick-any x:N L:(BinTree N) y:N R:(BinTree N)

assume i := ((binary-search x null) = (node L y R))

let {A := (!chain [null:(BinTree N)
 = (binary-search x null) [empty]
 = (node L y R) [i]]);
 -A := (!chain-> [true
 ==> (null /= (node L y R)) [tree-axioms]])}

(!from-complements (x = y & x in null) A -A)
```
First correctness properties

Now we can check the basis case proof before going on to the induction step:

> (!binary-search-found-base)

**Theorem**: (if (BinTree.BST null:(BinTree N))

(forall ?x:N

(forall ?L:(BinTree N)

(forall ?y:N

(forall ?R:(BinTree N)

(if (= (BinTree.binary-search ?x:N

 null:(BinTree N))

(node ?L:(BinTree N)

 ?y:N

 ?R:(BinTree N)))

(and (= ?x:N ?y:N)

 (BinTree.in ?x:N

 null:(BinTree N))))))))))
First correctness properties

We therefore continue with the induction step. To simplify the notation somewhat, we introduce a property procedure, found-property, which allows us to express the desired found result as follows:

\[(\forall T . \mathrm{BST} \ T \implies \mathrm{found-property} \ T)\].

\[
define \ [x_1 \ y_1 \ L_1 \ R_1] := \ [x_1 : \mathbb{N} \ y_1 : \mathbb{N} \ L_1 : (\mathrm{BinTree} \ \mathbb{N}) \ R_1 : (\mathrm{BinTree} \ \mathbb{N})]
\]
\[
define \ (\mathrm{found-property} \ T) :=
\]
\[
(\forall x \ L_1 \ y_1 \ R_1 .

(binary-search \ x \ T) = (\mathrm{node} \ L_1 \ y_1 \ R_1) \implies x = y_1 \land x \in T)
\]

After applying the definition of BST to \((\mathrm{node} \ L \ y \ R)\) and combining the result with the induction hypotheses, the proof proceeds by case analysis, setting up cases according to whether \(x\) is found at the root, in the left subtree, or in the right subtree, and applying the corresponding binary-search axiom in each case.
First correctness properties

define binary-search-found-step :=
  method (T)
  match T {
    (node L:(BinTree N) y:N R:(BinTree N)) =>
      let {[ind-hyp1 ind-hyp2] := [(BST L ==> found-property L)
                                 (BST R ==> found-property R)]}
      assume hyp := (BST T)
      conclude (found-property T)
      let {p0 := (BST L &
                   (forall x . x in L ==> x <= y) &
                   BST R &
                   (forall z . z in R ==> y <= z));
           _ := (!chain-> [hyp ==> p0] [BST.nonempty]]);
           fpl := (!chain-> [p0 ==> (BST L)] [prop-taut]
                     ==> (found-property L) [ind-hyp1]]);
           fpr := (!chain-> [p0 ==> (BST R)] [prop-taut]
                     ==> (found-property R) [ind-hyp2]])}
First correctness properties

```
pick-any x:N L1 y1:N R1
 let {subtree := (node L1 y1 R1)}
 assume hyp' := ((binary-search x T) = subtree)
 conclude (x = y1 & x in T)
 (!two-cases
 assume (x = y)
 (!both conclude (x = y1)
 (!chain->
 [T = (binary-search x T) [at-root]
 = subtree [hyp']
 ==> (y = y1) [tree-axioms]
 ==> (x = y1) [(x = y)]])
 conclude (x in T)
 (!chain-> [(x = y)
 ==> (x in T) [in.root]])
)
```
First correctness properties

```
assume (x /= y)

(!two-cases
 assume (x < y)
 (!chain-> [(binary-search x L)
 = (binary-search x T) [go-left]
 = subtree [hyp']
 ==> (x = y1 & x in L) [fpl]
 ==> (x = y1 & x in T) [in.left]])

 assume (~ x < y)
 (!chain-> [(binary-search x R)
 = (binary-search x T) [go-right]
 = subtree [hyp']
 ==> (x = y1 & x in R) [fpr]
 ==> (x = y1 & x in T) [in.right]])
)
```
First correctness properties

The complete proof is then:

```plaintext
> by-induction found {
 null => (!binary-search-found-base)
 | (T as (node _ _ _)) => (!binary-search-found-step T)}

Theorem: (forall ?T:(BinTree N)
 (if (BinTree.BST ?T:(BinTree N))
 (forall ?x:N
 (forall ?L:(BinTree N)
 (forall ?y:N
 (forall ?R:(BinTree N)
 (if (= (BinTree.binary-search ?x:N ?T:(BinTree N))
 (and (= ?x:N ?y:N)
 (BinTree.in ?x:N ?T:(BinTree N)))))))
```
First correctness properties

Turning to the proof of not-found, we will write the basis case and induction step proofs inline.

- The basis case is an immediate consequence of BinTree.in.empty.
- In the induction step, we again start by applying the definition of BST to T and combining the result with the induction hypotheses. The conclusion we seek being a negative, we naturally use proof by contradiction, but there are several different cases to be considered, and we must find a contradiction within each.

We define a property procedure (not-found-prop) for this proof, too.

```define (not-found-prop T) :=
 (forall x . (binary-search x T) = null ==> ~ x in T)```

First correctness properties

by-induction not-found {
 null =>
 assume (BST null)
 conclude (not-found-prop null)
 pick-any x:N
 assume ((binary-search x null) = null)
 (!chain-> [true ==> (~ x in null) [in.empty]])
 | (T as (node L y:N R)) =>
 let {p1 := (not-found-prop L);
 p2 := (not-found-prop R);
 [ind-hyp1 ind-hyp2] := [(BST L ==> p1) (BST R ==> p2)]}
 assume hyp := (BST T)
 conclude (not-found-prop T)
First correctness properties

let {smaller-in-left := (forall x . x in L ==> x <= y);
 larger-in-right := (forall z . z in R ==> y <= z);
 p0 := (BST L &
 smaller-in-left &
 BST R &
 larger-in-right);
 _ := (!chain-> [hyp ==> p0 [BST.nonempty]]);
 _ := (!chain-> [p0 ==> smaller-in-left [prop-taut]]);
 _ := (!chain-> [p0 ==> larger-in-right [prop-taut]]);
 _ := (!chain-> [p0
 ==> (BST L) [prop-taut]
 ==> (not-found-prop L) [ind-hyp1]]);
 _ := (!chain-> [p0
 ==> (BST R) [prop-taut]
 ==> (not-found-prop R) [ind-hyp2]]);
First correctness properties

```
pick-any x

assume hyp' := ((binary-search x T) = null)

(!by-contradiction (~ x in T)
  assume (x in T)
  let {disj := (!chain-> [(x in T)
      ==> (x = y | x in L | x in R) [in.nonempty]])}
  (!two-cases
    assume (x = y)
    (!absurd
      (!chain [null:(BinTree N)
        = (binary-search x T) [hyp']
        = T [at-root]])
      (!chain-> [true
        ==> (null /= T) [tree-axioms]]))
```
First correctness properties

```plaintext
assume (x /= y)
(!two-cases
  assume (x < y)
  (!cases disj
    assume (x = y)
    (!absurd (x = y) (x /= y))
  )
assume (x in L)
(!absurd
  (x in L)
  (!chain->
    [(binary-search x L)
     = (binary-search x T) [go-left]
     = null [hyp']
    ]
  )
==>((~ x in L) [p1])
)```
First correctness properties

```
assume (x in R)
(!absurd
 (x < y)
 (!chain->
 [(x in R)
 ==> (y <= x) [larger-in-right]
 ==> (~ x < y) [N.Less=.trichotomy4]]))

assume (~ x < y)
(!cases disj
 assume (x = y)
 (!absurd (x = y) (x /= y))
```
First correctness properties

assume (x in L)

(!absurd

(x /= y)

(!chain-> [(x in L)

==> (x <= y) [smaller-in-left]

==> (x < y | x = y) [N.Less=.definition]

==> (~ x < y &

(x < y | x = y)) [augment]

==> (x = y) [prop-taut]])

assume (x in R)

(!absurd

(x in R)

(!chain->

[(binary-search x R)

= (binary-search x T) [go-right]

= null [hyp']

==> (~ x in R) [p2]]))))))

} # by-induction
An optimized binary search algorithm

The binary search algorithm first compares for equality of the search value with the current node’s key. Notice, however, that until the equality comparison succeeds, the algorithm expends two comparisons per tree level. And in a balanced $n$-element tree, most searches will require descending through almost $\log_2 n$ levels (since about $n/2$ elements reside in the bottom level, $n/4$ at the next lowest level, etc.) Thus, on average, a total of almost $2 \log_2 n$ comparisons will be required. An alternative definition is:

```
assert axioms :=

(fun

 [(binary-search x (node L y R)) =
 [(binary-search x L) when (x < y)
 (binary-search x R) when (y < x)
 (node L y R) when (~ x < y & ~ y < x)]
 (binary-search x null) = null])

define [go-left go-right at-root empty] := axioms
```
Correctness of optimized algorithm

With this control structure, if the search value is in the left subtree, only one comparison is required to descend a level; if it is in the right subtree, two are required.

- Assuming it is equally likely to take one path or the other at each level, a total of about $1.5 \log_2 n$ comparisons are required, on average—a 25 percent reduction from the traditional version of the algorithm.

- This is a significant optimization, but before adopting it as the preferred version of binary search, we should be sure that it is correct.

This is a small example, but it is illustrative of one of the most important applications of logic and proof in computer science, correctness of algorithm optimizations.
Correctness of optimized algorithm

One way to prove the optimized algorithm is to modify the proofs for found and not-found by restructuring the case analyses to match the new when conditions.

Another way to establish found and not-found using the optimized version of binary-search is to start with the new axioms of the optimized version and prove the axioms of the original version as lemmas. Then the original proofs will still work.
Correctness of optimized algorithm

That is, from the new axioms first prove

\[
\text{define } \text{at-root}' := \\
(\forall x \; L \; y \; R. \\
\quad x = y \implies (\text{binary-search } x \; (\text{node } L \; y \; R)) = (\text{node } L \; y \; R))
\]

\[
\text{define } \text{go-right}' := \\
(\forall x \; L \; y \; R. \\
\quad x \neq y \& \sim x < y \implies \\
\quad (\text{binary-search } x \; (\text{node } L \; y \; R)) = (\text{binary-search } x \; R))
\]

(go-left is unchanged). Then reprove not-found with

\[
\text{let } \{[\text{at-root go-right}] := [\text{at-root}' \; \text{go-right}']\} \\
\text{conclude not-found} \\
\text{# ... same proof as above.}
\]

and similarly for found.