A Fast Exponentiation Algorithm

Previously: an example of a proof about an algorithm (binary search)
In this episode: another such proof, for an exponentiation algorithm

What’s new:

• properties of exponentiation (**)

• a “fast” exponentiation algorithm

 • why it’s fast
 • why it’s correct

• and, to do the proof:

 • introducing strong induction

 • a few lemmas, about simple natural number functions: half, even, odd, square, **

 • a variant of ordinary induction (one of many possible)

• an attempt at optimization
Mathematical background

First, define the exponentiation operator, **

```
extend-module N {
    open Times
    declare **: [N N] -> N [400 [int->nat int->nat]]
    module Power {
        assert* def := [(x ** zero = one)
                        (x ** S n = x * x ** n)]
        define [if-zero if-nonzero] := def
    } # close module Power
} # close module N
```

In conventional mathematical notation:

\[
x^0 = 1; \\
x^{n+1} = x \cdot x^n.
\]
Defining a “fast” exponentiation algorithm

Using the defining equations, x^n requires $n - 1$ multiplications. It’s possible to compute x^n with only $\log_2 n$ multiplications, using

$$n = 2 \lfloor n/2 \rfloor, \text{ if } n \text{ is even;}$$

$$n = 2 \lfloor n/2 \rfloor + 1, \text{ if } n \text{ is odd.}$$

Thus, if n is even,

$$x^n = x^{2 \lfloor n/2 \rfloor} = (x^{\lfloor n/2 \rfloor})^2,$$

and if n is odd,

$$x^n = x^{2 \lfloor n/2 \rfloor + 1} = x^{2 \lfloor n/2 \rfloor} \cdot x = (x^{\lfloor n/2 \rfloor})^2 \cdot x.$$
The algorithm

\[x^n = \begin{cases}
(x^{\lfloor n/2 \rfloor})^2 & \text{where } n \text{ is even;} \\
(x^{\lfloor n/2 \rfloor})^2 \cdot x & \text{where } n \text{ is odd}
\end{cases} \]

Using this formula recursively and grounding it with the \(n = 0 \) case:

```
extend-module N {
    declare fast-power: [N N] -> N [[int->nat int->nat]]
    module fast-power {
        assert def :=
            (fun 
                [(fast-power x n) =
                    [one when (n = zero) 
                    (square (fast-power x half n)) when (n =/= zero & even n) 
                    ((square (fast-power x half n)) * x) when (n =/= zero & ~ even n)]])
            define [if-zero nonzero-even nonzero-odd] := def
    } # close module fast-power
} # close module N
```
Strong induction

Proving that $(\text{fast-power } x \ n) = x^n$ is most readily done using “strong induction.”

Principle 1: Strong Induction for Natural Numbers

To prove $\forall n . P(n)$ where n ranges over the natural numbers, it suffices to prove:

$$\forall n . [\forall k . k < n \Rightarrow P(k)] \Rightarrow P(n).$$

The assumption $[\forall k . k < n \Rightarrow P(k)]$ is called the strong induction hypothesis.

The strong induction hypothesis assumes $P(k)$ for all preceding values $k = 0, \ldots, n - 1$.

Just what is needed for proofs about recurrence relations that recur back to one or more values other than $n - 1$.
Understanding strong induction

• Why is there no basis case?
• Does it have to be that “strong”?
• Is it really “stronger” than ordinary induction?
Why do a formal proof about fast-power?

- Check the details rigorously.
- Develop new tools: lemmas about basic mathematical functions.
- “Warm-up” for proof about a more subtle exponentiation algorithm — see Section 15.2 of the textbook.
- Practice with logic principles, including new “strong induction.”
Properties of half

extend-module N {
 declare half: [N] -> N [[int->nat]]
 module half {
 assert* def :=
 [(half zero = zero)
 (half S zero = zero)
 (half S S n = S half n)]
 define [if-zero if-one nonzero-nonone] := def
 }
}

Here are a couple of simple properties of half that we will need:

 define double := (forall n . half (n + n) = n)

 define times-two := (forall n . half (two * n) = n)
Another variant of induction

Principle .2: Induction for Natural Numbers — Variant

To prove $\forall n . P(n)$ where n ranges over the natural numbers, it suffices to prove:

1. **First Basis Case**: $P(0)$.
2. **Second Basis Case**: $P(1)$.
3. **Induction Step**: $\forall n . P(n) \Rightarrow P(n + 2)$.

If we visualize the original induction formulation like this:

```
0 1 2 3 4 5 ... 
```

our variant can correspondingly be visualized:

```
0 1 2 3 4 5 ... 
```
Why it works

If we visualize the original induction formulation like this:

```
0 1 2 3 4 5 6 ...
```

our variant can correspondingly be visualized:

```
0 1 2 3 4 5 6 ...
```

In Athena, this “two-step” variant requires no new machinery. **by-induction** is sufficient: it allows subcasing of the proof in any way that exhausts the entire set of natural numbers.
Proof of \((\text{forall } n . \text{ half } (n + n) = n)\)

by-induction double {
 zero => (!chain [(\text{half } (\text{zero } + \text{ zero}))
 --\ (\text{half } \text{ zero}) \quad \text{[Plus.right-zero]}
 --\ \text{zero} \quad \text{[if-zero]}])

 | (S zero) =>
 (!chain [(\text{half } (S \text{ zero } + S \text{ zero}))
 --\ (\text{half } S (S \text{ zero } + \text{ zero})) \quad \text{[Plus.right-nonzero]}
 --\ (\text{half } S S (\text{ zero } + \text{ zero})) \quad \text{[Plus.left-nonzero]}
 --\ (\text{half } S S \text{ zero}) \quad \text{[Plus.right-zero]}
 --\ (S \text{ half } \text{ zero}) \quad \text{[nonzero-nonone]}
 --\ (S \text{ zero}) \quad \text{[if-zero]}])

 | (S (S m)) =>
 \text{let} \{IH := (\text{half } (m + m) = m}\}

 (!chain
 [(\text{half } (S S m + S S m))
 --\ (\text{half } S (S S m + S m)) \quad \text{[Plus.right-nonzero]}
 ...
 --\ (S S m) \quad \text{[IH]})]

}
Proof of \(\text{half.times-two} := (\forall n . \text{half} (\text{two} \times n) = n) \)

\[
\begin{array}{l}
\text{conclude times-two} \\
\hspace{1cm} \text{pick-any } x \\
\hspace{1cm} (!\text{chain } [(\text{half} (\text{two} \times x)) \\
\hspace{2cm} \rightarrow (\text{half} (x + x)) \hspace{1cm} [\text{Times.two-times}] \\
\hspace{2cm} \rightarrow x \hspace{1cm} [\text{double}])] \\
\end{array}
\]

Exercises in the textbook prove other simple properties of half:

\[
\begin{array}{l}
\text{define twice} := (\forall x . \text{two} \times \text{half} S S x = S S (\text{two} \times \text{half} x)) \\
\text{define two-plus} := (\forall x y . \text{half} (\text{two} \times x + y) = x + \text{half} y) \\
\end{array}
\]

and the textbook contains proofs of ordering properties:

\[
\begin{array}{l}
\text{define less-S} := (\forall n . \text{half} n < S n) \\
\text{define less} := (\forall n . n \neq \text{zero} \Rightarrow \text{half} n < n) \\
\end{array}
\]
Properties of odd and even

extend-module N {
 declare even, odd: [N] -> Boolean [[int->nat]]

module EO {
 assert* even-definition := [(even x <=> two * half x = x)]
 assert* odd-definition := [(odd x <=> two * (half x) + one = x)]

Some lemmas:

 define even-zero := (even zero)
 define odd-one := (odd S zero)
 define even-S-S := (forall n . even S S n <=> even n)
 define odd-S-S := (forall n . odd S S n <=> odd n)
 define odd-if-not-even := (forall n . ~ even n => odd n)
 define not-odd-if-even := (forall n . even n => ~ odd n)
 define even-iff-not-odd := (forall n . even n <=> ~ odd n)
 define not-even-if-odd := (forall n . odd n => ~ even n)

 define even-square := (forall n . even n <=> even square n)
}
} # close module EO
Proof of \((\forall n . \sim \text{even } n \implies \text{odd } n)\)

by-induction odd-if-not-even {
 zero => (!chain [\(\sim \text{even } zero\)])
 ==> (even zero & \(\sim \text{even } zero\)) [augment]
 ==> (odd zero) [prop-taut]]
| (S zero) =>
 assume (\(\sim \text{even } S \text{ zero}\))
 (!chain<-
 [(odd S zero)
 <= (two * (half S zero) + one = S zero) [odd-definition]
 <= (S (two * half S zero) = S zero) [Plus.right-one]
 <= (S (two * zero) = S zero) [half.if-one]
 <= (S zero = S zero) [Times.right-zero]])
| (S (S m)) =>
 let {IH := (\(\sim \text{even } m \implies \text{odd } m\))}
 (!chain [(\(\sim \text{even } S \ S \ m\)])
 ==> (\(\sim \text{even } m\)) [even-S-S]
 ==> (\text{odd } m) [IH]
 ==> (\text{odd } S \ S \ m) [odd-S-S]]
} # close module EO
Proof of \((\forall x . \text{even } x \iff \text{even square } x)\)

More challenging (a starred exercise). Does not require induction; it can be done with equation chaining and proof by contradiction.

```plaintext
extend-module EO {
    conclude even-square
    pick-any x
    let {right := assume (even x)
        conclude (even square x)
        ...
    }
    left := assume (even square x)
    (!by-contradiction (even x)
        assume hyp := (~ even x)
        ...
        A := conclude (two * (half square x) + one = square x)
        ...
    (!absurd
        (!chain- > [A => (odd square x) [odd-definition]]))
        (!chain- > [(even square x)
            => (~ odd square x) [not-odd-if-even]]))}
    (!equiv right left)
}
```

CSCI.6962/4962 Software Verification—Fundamental Proof Methods in Computer Science (Arkoudas and Musser)—Chapter 12—p. 16/27
Properties of **

```plaintext
extend-module Power {
    define Plus-case := (forall m n x . x ** (m + n) = x ** m * x ** n)
    define left-one := (forall n . one ** n = one)
    define right-one := (forall n . n ** one = n)
    define right-two := (forall n . n ** two = n * n)
    define left-times := (forall n x y . (x * y) ** n = x ** n * y ** n)
    define right-times := (forall m n x . x ** (m * n) = (x ** m) ** n)
    define two-case := (forall n . square n = n ** two)
}
} # close module Power
```
Correctness property of fast-power

```plaintext
declare fast-power: [N N] -> N [[int->nat int->nat]]
module fast-power {
    assert axioms :=
        (fun
            [(fast-power x n) =
                [one when (n = zero)
                (square (fast-power x half n)) when (n =/= zero & even n)
                ((square (fast-power x half n)) * x) when (n =/= zero & ~ even n)]])
    define [if-zero nonzero-even nonzero-odd] := axioms

    define correctness := (forall n x . (fast-power x n) = x ** n)
```
Proof of correctness

We use strong induction.
Available in Athena as a binary method
strong-induction.principle that takes the following arguments:

1. The sentence p that we are seeking to derive.
2. A unary method M that derives the strong induction step of the proof.

Given these two arguments, an application of
strong-induction.principle will derive p.
Proof of correctness

define[^ sq hf] := [fast-power square half]
define step :=
 method (n)
 assume ind-hyp := (forall m . m < n == > forall x . x ^ m = x ** m)
 conclude (forall x . x ^ n = x ** n)
 pick-any x
 (!two-cases
 assume (n = zero)
 (!chain [(x ^ n)
 -- > one [if-zero]
 <=- (x ** zero) [Power.if-zero]
 <=- (x ** n) [(n = zero)]])
 assume (n /= zero)
 ...)

assume \((n \neq \text{zero})\)

let \(\{p_1 :=\)

conclude \(p := (\forall x . \ x ^ \ hf \ n = x ^{\ * \ hf \ n})\)

(! chain-\(\Rightarrow\) [(\(n \neq \text{zero}\))

\(\Rightarrow (hf \ n < n)\) [half.less]

\(\Rightarrow p\) [ind-hyp]]);\)

\(p_2 := \text{conclude} \ (sq (x ^ \ hf \ n) = x ^{\ * \ (two * hf \ n)})\)

(! chain

[((sq (x ^ \ hf \ n))

\(--\Rightarrow (sq (x ^ {\ * \ hf \ n}))\) [p_1]

\(--\Rightarrow ((x ^ {\ * \ hf \ n}) *

(x ^ {\ * \ hf \ n}))\) [square.def]

\(--\Rightarrow (x ^ {\ * \ ((hf \ n) + hf \ n)})\) [Power.Plus-case]

\(--\Rightarrow (x ^ {\ * \ (two * hf \ n)})\) [Times.two-times]]})\)

(! two-cases

assume \((\text{even} \ n)\)

...

assume \((\sim \text{even} \ n)\)

...
Proof of correctness, continued

<table>
<thead>
<tr>
<th>(!two-cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>assume (even n)</td>
</tr>
<tr>
<td>(!chain</td>
</tr>
<tr>
<td>([x ^ n)</td>
</tr>
<tr>
<td>--> (sq (x ^ hf n))</td>
</tr>
<tr>
<td>--> (x ** (two * hf n))</td>
</tr>
<tr>
<td>--> (x ** n)</td>
</tr>
<tr>
<td>assume (~ even n)</td>
</tr>
<tr>
<td>let {_ := (!chain-> {[~ even n] ==> (odd n) [EO.odd-if-not-even]}}</td>
</tr>
<tr>
<td>(!chain</td>
</tr>
<tr>
<td>([x ^ n)</td>
</tr>
<tr>
<td>--> ((sq (x ^ hf n)) * x)</td>
</tr>
<tr>
<td>--> ((x ** (two * hf n)) * x)</td>
</tr>
<tr>
<td><-- ((x ** (two * hf n)) * (x ** one)) [Power.right-one]</td>
</tr>
<tr>
<td><-- (x ** ((two * hf n) + one)) [Power.Plus-case]</td>
</tr>
<tr>
<td>--> (x ** n)</td>
</tr>
</tbody>
</table>

[EO.odd-definition]})}
Proof of correctness, continued

With the step method thus defined, the proof is completed with:

```latex
(! strong-induction.principle correctness step)
```

Or, we could write the whole proof as an application of `strong-induction.principle` with the step method defined inline:

```latex
(! strong-induction.principle correctness
  method (n)
  ... body of the above step method
)
```
A potential optimization, using tail-recursion

```
extend-module N {
    declare fast-power-accumulate: [N N N] -> N [[int->nat int->nat int->nat]]
    module fast-power-accumulate {
        define fpa := fast-power-accumulate
        assert axioms :=
            (fun
                [(fpa r x n) =
                    [r when (n = zero)
                    (fpa r (x * x) (half n)) when (n /= zero & even n)
                    (fpa (r * x) (x * x) (half n)) when (n /= zero & ~ even n)])]
            [if-zero nonzero-even nonzero-odd] := axioms
        define correctness := (forall n r x . (fpa r x n) = r * x ** n)
    } # close module fast-power-accumulate
} # close module N
```
If we still want an exponentiation function with the same two-argument interface as before:

```
extend-module N {
  extend-module fast-power {
    define fpa := fast-power-accumulate
    assert* definition := [((fast-power x n) = (fpa one x n))]
  }
} # close module fast-power
} # close module N
```
Is it really an optimization?

The definition of fast-power-accumulate is tail-recursive, and therefore is equivalent to a loop.

- Does that make it necessarily more efficient than the original embedded-recursion version?
- Perhaps surprisingly, and unfortunately, the answer is no.
- It can be *less efficient* in some cases.
- See Section 12.7 of the textbook for an explanation.
- See Section 15.2 for a true optimization (and a generalization).
Recap

• New algorithm correctness proof example, fast-power
• New induction principle: strong induction
• New “two-step” variant of ordinary induction
• Building up library of axioms and lemmas for natural number functions: half, even, odd, square, **
• An attempt at optimization …