
CSCI-1200 Data Structures — Spring 2019
Homework 2 — Schedule Classes

In this assignment you will parse and compute statistics from course schedules. Please read the entire handout
before starting to code the assignment.

Input Format

You will parse an input file with information for zero or more courses. An example line might look like:

64859 CSCI 4030-01 RANDOMIZED_ALGORITHMS MR 10:00AM 11:50AM DARRIN_239

Each line contains several fields, separated by spaces. You can assume that values have no white spaces,
i.e. a course name like “RANDOMIZED ALGORITHMS” is illegal. There are 8 fields in each line: a CRN
(unique ID, e.g. 64859), a department code (e.g. CSCI), a course code (e.g. 4030-01), the course title (e.g.
RANDOMIZED ALGORITHMS), the days this course occurs on (e.g. MR), the time the course starts (e.g.
10:00 AM), the time the course ends (e.g. 11:50AM), and a room (e.g. DARRIN 239).

Each letter in the days represents one day, with M being Monday, T being Tuesday, W being Wednesday,
R being Thursday, and F being Friday. Multiple days can appear on one line in the input, as shown in the
example above. Time is always two digits for the hour, a colon, two digits for the minute, and then either
“AM” or “PM”.

There may be multiple lines for one course, so you will want to study the provided input and output carefully
before beginning. We strongly recommend that you use the iostream >> operator to parse this file and not
use getline or other C-style file I/O commands.

File I/O and Command Line Arguments

Your program will run with several command-line arguments, the first being the name of the input file
described above and the second being the name of the output file where you will write either nicely formatted
tables or an interesting statistic (described below). Example input and output files posted on the course
website.

Here are examples of four valid command lines to your program that demonstrate the different usages. These
are described in more detail below.

scheduling.exe simple2.txt out_simple2_room.txt room

scheduling.exe simple2.txt out_simple2_room.txt room ACADMY_AUD

scheduling.exe simple2.txt out_simple2_dept_ECSE.txt dept ECSE

scheduling.exe simple2.txt out_simple2_custom.txt custom

We have provided you with several schedule datasets, primarily based off of the Fall 2018 registration data
from SIS. We have done some processing to make your task simpler.

Room-based Output

If the third argument is room then you will be outputting statistics about courses in each room. There is an
optional fourth argument, if present you should only print information about courses in the room with the
name matching the fourth argument. In the above example all the courses are in “ACADMY AUD” so the
output will look the same with or without the fourth argument. If the room cannot be found, your output
should look like the examples using “empty.txt” . Your spacing must match exactly - there are two spaces
in between each column and columns must be wide enough to fit the data.

When outputting more than one room, the tables should be printed alphabetically by room name. Within
each table, courses should first be sorted by day of the week (Monday should come before Tuesday, Tuesday



before Wednesday, etc.). Courses on the same day should be sorted by what hour the course starts at, with
the earlier courses coming first. If two or more courses happen in the same time and place, you should sort
those courses by course code, i.e. “1100-01” would come before “1100-02”. If the course numbers also match,
you should sort by department name, i.e. “CHEM” would come before “CSCI”.

Department-based Output

If the third argument is dept then a fourth argument is mandatory. The fourth argument specifies a depart-
ment code (keep in mind this can be anything as long as it does not have whitespace). If no courses for the
department code are found, the output should look the same as for the “empty.txt” case.

Similar to the room-based output, the columns in the table that you output should be wide enough to fit the
data and should have two spaces in between each column. Sorting should be done by course code first, then
by the earliest course (using day then starting hour, as described in the room-based output section above).

Creative Statistic

The last part of the assignment is a chance for you to be creative. Brainstorm a new interesting statistic
that can be calculated and presented from this data. (There is no sample output for this, because there is
no autograding for this part beyond whether or not you did it. The TA will manually grade the output for
quality.

Examples include tabulating when each department “opens” (has its first class), perhaps comparing across
different days, or seeing if some rooms only get heavy usage on certain days. Your new statistic should only
be printed if the third argument is custom. NOTE: You MUST make a creative statistic to get full credit,
even if you are not interested trying for the extra credit.

Extra credit will be awarded to particularly interesting statistics that require clever programming. The most
important task for this part of the assignment is to write a concise description (< 100 words) of your new
statistic. Put this description in your plaintext README.txt file along with any other notes for the grader.
Be sure to tell the grader which dataset best demonstrates your new statistic, and include a sample of the
output. Feel free to create your own dataset and include it with your submission.

Useful Code

To control the formatting of your tables, you’ll want to read up on the various I/O manipulators:
std::setw(int), std::setprecision(int), std::fixed, std::left, etc. You’ll need to #include <iomanip>

to access these tools. And don’t forget about the sort function that can be used to order the contents of a
vector.

If you add -std=c++11 to your compile line, you can use C++11 features. Submitty will use this flag, if
you do not want any C++11 features this will not affect you. However, students on Homework 2 often find
std::stoi to be useful, and this requires C++11.

We will not formally cover the concept of “include guards” until Tuesday’s lecture. If you are writing more
than one class, you may run into strange compiler errors when you compile everything. This may be due to
a problem with including your class files, which can be solved as follows: for a header file called myclass.h
add these two lines at the very top of the header file:

#ifndef __MYCLASS_H

#define __MYCLASS_H

and at the very bottom of your .h file, add this line:

#endif

If you want to make a vector of vectors of a type (let’s use int in this example) called vectorname, you can do
so by writing std::vector<std::vector<int> > vectorname and then indexing as usual. vectorname[0]

2



will return a vector<int> in this example. The most important detail is to remember to put a space
between the two closing angle brackets. Some compilers will interpret >> as the input operator, even though
it’s obvious to a human reader that this was not the intent.

Program Requirements & Submission Details

Your program should involve the definition of at least one class that has its own .h and .cpp files, named
appropriately. We have provided a series of series of datasets to aid in your program development and
debugging. The majority of points for this homework assignment will be awarded for programs that work
correctly for the simple examples.

Do all of your work in a folder named hw2 inside of your Data Structures homeworks directory. Use good
coding style when you design and implement your program. Be sure to make up new test cases and don’t
forget to comment your code! Please use the provided template README.txt file for any notes you want
the grader to read. You must do this assignment on your own, as described in the “Collaboration Policy &
Academic Integrity” handout. If you did discuss the problem or error messages, etc. with anyone, please
list their names in your README.txt file. If by Wednesday 11:59:59PM any version of your HW2 that you’ve
submitted has earned 5 points between Test Cases 3, 4, 5, 6, and 7, you will earn you a 1 day extension for
HW2.

3

http://www.cs.rpi.edu/academics/courses/spring19/csci1200/academic_integrity.php
http://www.cs.rpi.edu/academics/courses/spring19/csci1200/academic_integrity.php

