
CSCI-1200 Data Structures — Spring 2019
Homework 11 — Big ‘O’ Notation & Performance

In this lab we will carry out a series of tests on the five fundamental data structures in the Standard Template
Library we have studied this semester: vector, list, binary search tree (set / map), priority queue, and
hash table (unordered set / unordered map). We will hypothesize and evaluate the relative performance of
these data structures and solidify our understanding of data structure and algorithm complexity analysis.

For each data structure you will predict and measure the runtime for four different moderately compute-
intensive operations: sorting, removing duplicates (without changing the overall order), removing duplicates
(allowed to change the overall order), and finding the mode (most frequently occurring element). You will
perform these tests on STL string objects that can be read from a file or constructed from random sequences
of chars. Important: Keep in mind that you should consider efficient implementations and may want to
consider the strategies in Lectures 13.1-13.3 and 13.8 .

Order Notation Table

First, consider the table of order notations in order table.txt. You should replace the letter “X” with the
appropriate captial letter below for each cell. Do not change any other formatting including spacing. The
Submitty gradeable will have a test case called “Table Format” that will give 1 point if we can parse your
table, and 0 points otherwise. You may want to revisit this table once you have done your implementation
to correct any mistakes. These will be graded on what an efficient implementation’s order notation would
be, even if that’s more efficient than the solution you code.

“Rules” for comparison: For each operation, analyze the cost of a function that takes in two arguments:
an unordered, read-only c-style array storing the input and a second c-style array where you will write the
output. The function should read through the input array only once (and must do so without skipping input:
i.e. it must read index 0, then index 1, etc.) and construct and use one instance of the specified STL data
structure to compute the output.

The letters are:

• A - O(1)

• B - O(log n)

• C - O(n)

• D - O(n log n)

• E - O(n2)

• F - O(n3)

• X - “Not feasible/sensible”

Additionally the following rules apply:

• There are between 0-3 cells with “A”

• There are between 0-5 cells with “B”

• There are between 0-5 cells with “C”

• There are between 8-15 cells with “D”

• There are between 0-5 cells with “E”

• There are between 0-3 cells with “F”

• There are exactly 2 cells with “X”

Performance Analysis of Vectors

We have implemented the 4 operations for the vector datatype and included them in performance.cpp .
The data structure, operation, source of the input, size & length of input (for randomly generated input),
and output file are specified on the command line. Here are a few sample command lines:

a.exe vector mode in.txt out.txt

a.exe vector sort random 10000 5 out.txt

a.exe vector remove_dups_same_order random 10000 2 out.txt

The first example reads the file named in.txt, uses a vector to find the most frequently occurring value
(implemented by first sorting the data), and then outputs that string (the mode) to a file named out.txt.
The second example will generate 10,000 random strings of length 5, use a vector to sort them, and then
output the result to the file named out.txt. Similarly, the command line option remove dups same order

will remove the duplicate elements from the input (without otherwise changing the order), while the command
line option remove dups any order will remove the duplicate elements from the input but can change the
ordering.

Compile and test the provided code on a variety of tests of different sizes for the vector datatype for each
of the 4 operations. The provided code uses the clock() function to measure the processing time of the
computation. The resolution accuracy of the timing mechanism is system and hardware dependent and may
be in seconds, milliseconds, or something else. Make sure you use large enough inputs so that your running
time for the largest test is about 5 seconds (to ensure the measurement isn’t just noise). The program reports
the time to load, process, and save the data. Record the results in a table like this:

Sorting random 5 letter strings using STL vector

of strings load time (sec) operation time (sec) output time (sec)

10000 0.023 0.031 0.089

20000 0.043 0.067 0.172

50000 0.115 0.180 0.445

100000 0.226 0.402 0.918

As the dataset grows, does your predicted big ‘O’ notation match the raw performance numbers? For
example, in the table above, the time to both load and output is linear, in the # of strings, that is O(n).

load time(n) = kload ∗ n

output time(n) = koutput ∗ n

We can estimate the coefficients from the collected numbers: kload ≈ 2.2 x 10−6 sec and koutput
≈ 9.0 x 10−6 sec. The running time for sorting with the STL vector sorting algorithm is O(n log2 n):

operation time(n) = koperation ∗ n log2 n

with coefficient koperation ≈ 2.3 x 10−7 sec. Of course these constants will be different on different
operating systems, different compilers, and different hardware! These constants will allow us to compare
data structures / algorithms with the same big ‘O’ notation.

Performance Analysis of Other Code

Finish the implementation of the remaining data structures by filling in the incomplete functions in
perfomance bst.cpp, perfomance hash table.cpp, perfomance linked list.cpp, and
perfomance priority queue.cpp and debug your code before proceeding.

In the provided code base, two fixed length arrays of string objects are used to load and output the data.
Thus, the load & output times should be similar for all datatypes. The data structure specified on the

2

command line is the only additional data structure that is “allowed” in the implementation of the operation.
You should carefully consider the most efficient way (minimize the running time) to use the data structure
to complete the operation. Make sure you debug the output of your implementation by comparing it to the
output from the vector datatype!

Do the same tests you did for the vector on the remaining data structures, keeping in mind that the
input sizes may need to be different to achieve a 5 second runtime. Put your findings into a PDF file
called report.pdf which contains both the table of timing measurements and the input sizes you used for
all 4 operations and all 5 data types. Make sure to label each table clearly. You can write this up in a
word/spreadsheet processor such as Microsoft Word/Excel, Pages/Sheets, or LibreOffice and then “Export
to PDF” or “Save As PDF” depending on the software. If you are unsure how to do this step, we recommend
you ask a friend (without sharing your document!) or ask in lab. We will not accept formats other than
PDF files. You can check on Submitty to see if your report is viewable.

Submission

Submit the four implementation files, the tables with runtimes, the simple README, and the order notation
table:

• perfomance bst.cpp

• perfomance hash table.cpp

• perfomance linked list.cpp

• perfomance priority queue.cpp

• report.pdf

• order table.txt

• README.txt

3

