
CSCI-1200 Data Structures — Spring 2019

Lecture 6 — Pointers & Dynamic Memory

Announcements: Test 1 Information

• Test 1 will be held Thursday, January 31st, 2019 from 6-7:50pm

– Students will be randomly assigned to a test room and seating zone.

– No make-ups will be given except for pre-approved absence or illness, and a written excuse from the Dean
of Students or the Student Experience office or the RPI Health Center will be required.

– If you have a letter from Disability Services for Students and you have not already emailed it to
ds_instructors@cs.rpi.edu, please do so ASAP. Erica Eberwein will be in contact with you about your
accommodations for the test.

• Coverage: Lectures 1-6, Labs 1-3, and Homeworks 1-2.

– Practice problems from previous exams are available on the course website. Solutions to the problems
have been posted. The best way to prepare is to completely work through and write out your solution to
each problem, before looking at the answers.

• OPTIONAL: Prepare a 2 page, black & white, 8.5x11”, portrait orientation .pdf of notes you would like to
have during the exam. This may be digitally prepared or handwritten and scanned or photographed. The file
may be no bigger than 2MB. You will upload this file to Submitty (“Test 1 Notes Upload”) before Wednesday
night @11:59pm. We will print this and attach it to your exam. Make sure you get credit for test case 2 and
that you view the details to verify your sheet looks correct.

• Bring to the exam room:

– Your Rensselaer photo ID card.

– Pencil(s) & eraser (pens are ok, but not recommended). The exam will involve handwriting code on paper
(and other short answer problem solving). Neat legible handwriting is appreciated. We will be somewhat
forgiving to minor syntax errors – it will be graded by humans not computers :)

– Do not bring your own scratch paper. We will provide scratch paper.

– Computers, cell-phones, smart watches, calculators, music players, etc. are not permitted. Please do not
bring your laptop, books, backpack, etc. to the exam room – leave everything in your dorm room. Unless
you are coming directly from another class or sports/club meeting.

Review from Lecture 5

• Pointer variables, arrays, pointer arithmetic and dereferencing, character arrays, and calling conventions.

Today’s Lecture — Pointers and Dynamic Memory

• Arrays and pointers

• Different types of memory

• Dynamic allocation of arrays

• Memory Debuggers

6.1 Three Types of Memory

• Automatic memory: memory allocation inside a function when you create a variable. This allocates space for
local variables in functions (on the stack) and deallocates it when variables go out of scope. For example:

int x;

double y;

• Static memory: variables allocated statically (with the keyword static). They are are not eliminated when
they go out of scope. They retain their values, but are only accessible within the scope where they are defined.
NOTE: Static variables are not very common.

static int counter;

• Dynamic memory: explicitly allocated (on the heap) as needed. This is our focus for today.



6.2 Dynamic Memory

• Dynamic memory is:

– created using the new operator,

– accessed through pointers, and

– removed through the delete operator.

• Here’s a simple example involving dynamic allocation of integers:

int * p = new int;

*p = 17;

cout << *p << endl;

int * q;

q = new int;

*q = *p;

*p = 27;

cout << *p << " " << *q << endl;

int * temp = q;

q = p;

p = temp;

cout << *p << " " << *q << endl;

delete p;

delete q;
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• The expression new int asks the system for a new chunk of memory that is large enough to hold an integer
and returns the address of that memory. Therefore, the statement int * p = new int; allocates memory
from the heap and stores its address in the pointer variable p.

• The statement delete p; takes the integer memory pointed by p and returns it to the system for re-use.

• This memory is allocated from and returned to a special area of memory called the heap. By contrast, local
variables and function parameters are placed on the stack as discussed last lecture.

• In between the new and delete statements, the memory is treated just like memory for an ordinary variable,
except the only way to access it is through pointers. Hence, the manipulation of pointer variables and values is
similar to the examples covered in Lecture 5 except that there is no explicitly named variable for that memory
other than the pointer variable.

• Dynamic allocation of primitives like ints and doubles is not very interesting or significant. What’s more
important is dynamic allocation of arrays and objects.

6.3 Exercise

• What’s the output of the following code? Be sure to draw a picture to help you figure it out.

double * p = new double;

*p = 35.1;

double * q = p;

cout << *p << " " << *q << endl;

p = new double;

*p = 27.1;

cout << *p << " " << *q << endl;

*q = 12.5;

cout << *p << " " << *q << endl;

delete p;

delete q;
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6.4 Dynamic Allocation of Arrays

• How do we allocate an array on the stack? What is the code? What memory diagram is produced by the code?

• Declaring the size of an array at compile time doesn’t offer much flexibility. Instead we can dynamically allocate
an array based on data. This gets us part-way toward the behavior of the standard library vector class. Here’s
an example:

int main() {

std::cout << "Enter the size of the array: ";

int n,i;

std::cin >> n;

double *a = new double[n];

for (i=0; i<n; ++i) { a[i] = sqrt(i); }

for (i=0; i<n; ++i) {

if ( double(int(a[i])) == a[i] )

std::cout << i << " is a perfect square " << std::endl;

}

delete [] a;

return 0;

}

i

stack heap

n

a

• The expression new double[n] asks the system to dynamically allocate enough consecutive memory to hold n
double’s (usually 8n bytes).

– What’s crucially important is that n is a variable. Therefore, its value and, as a result, the size of the
array are not known until the program is executed and the the memory must be allocated dynamically.

– The address of the start of the allocated memory is assigned to the pointer variable a.

• After this, a is treated as though it is an array. For example: a[i] = sqrt( i );

In fact, the expression a[i] is exactly equivalent to the pointer arithmetic and dereferencing expression *(a+i)

which we have seen several times before.

• After we are done using the array, the line: delete [] a; releases the memory allocated for the entire
array and calls the destructor (we’ll learn about these soon!) for each slot of the array. Deleting a dynamically
allocated array without the [] is an error (but it may not cause a crash or other noticeable problem, depending
on the type stored in the array and the specific compiler implementation).

– Since the program is ending, releasing the memory is not a major concern. However, to demonstrate
that you understand memory allocation & deallocation, you should always delete dynamically allocated
memory in this course, even if the program is terminating.

– In more substantial programs it is ABSOLUTELY CRUCIAL. If we forget to release memory repeatedly
the program can be said to have a memory leak. Long-running programs with memory leaks will eventually
run out of memory and crash.

6.5 Exercises

1. Write code to dynamically allocate an array of n integers, point to this array using the integer pointer variable
a, and then read n values into the array from the stream cin.

2. Now, suppose we wanted to write code to double the size of array a without losing the values. This requires
some work: First allocate an array of size 2*n, pointed to by integer pointer variable temp (which will become
a). Then copy the n values of a into the first n locations of array temp. Finally delete array a and assign temp

to a.

Why don’t you need to delete temp?

Note: The code for part 2 of the exercise is very similar to what happens inside the resize member function
of vectors!
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6.6 Dynamic Allocation of Two-Dimensional Arrays

• To store a grid of data, we will need to allocate a top level array of pointers to arrays of the data. For example:

double** a = new double*[rows];

for (int i = 0; i < rows; i++) {

a[i] = new double[cols];

for (int j = 0; j < cols; j++) {

a[i][j] = double(i+1) / double (j+1);

}

}

Draw a picture of the resulting data structure.
Then, write code to correctly delete all of this memory.

6.7 Dynamic Allocation: Arrays of Class Objects

• We can dynamically allocate arrays of class objects. The default constructor (the constructor that takes no
arguments) must be defined in order to allocate an array of objects.

class Foo {

public:

Foo();

double value() const { return a*b; }

private:

int a;

double b;

};

Foo::Foo() {

static int counter = 1;

a = counter;

b = 100.0;

counter++;

}

int main() {

int n;

std::cin >> n;

Foo *things = new Foo[n];

std::cout << "size of int: " << sizeof(int) << std::endl;

std::cout << "size of double: " << sizeof(double) << std::endl;

std::cout << "size of foo object: " << sizeof(Foo) << std::endl;

for (Foo* i = things; i < things+n; i++)

std::cout << "Foo stored at: " << i << " has value " << i->value() << std::endl;

delete [] things;

}

size of int: 4

size of double: 8

size of foo object: 16

Foo stored at: 0x104800890 has value 100

Foo stored at: 0x1048008a0 has value 200

Foo stored at: 0x1048008b0 has value 300

Foo stored at: 0x1048008c0 has value 400

...
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6.8 Memory Debugging

In addition to the step-by-step debuggers like gdb, lldb, or the debugger in your IDE, we recommend using a memory
debugger like “Dr. Memory” (Windows, Linux, and MacOSX) or “Valgrind” (Linux and MacOSX). These tools can
detect the following problems:

• Use of uninitialized memory

• Reading/writing memory after it has been free’d (NOTE: delete calls free)

• Reading/writing off the end of malloc’d blocks (NOTE: new calls malloc)

• Reading/writing inappropriate areas on the stack

• Memory leaks - where pointers to malloc’d blocks are lost forever

• Mismatched use of malloc/new/new [] vs free/delete/delete []

• Overlapping src and dst pointers in memcpy() and related functions

6.9 Sample Buggy Program

Can you see the errors in this program?

1 #include <iostream>

2

3 int main() {

4

5 int *p = new int;

6 if (*p != 10) std::cout << "hi" << std::endl;

7

8 int *a = new int[3];

9 a[3] = 12;

10 delete a;

11

12 }

6.10 Using Dr. Memory http://www.drmemory.org

Here’s how Dr. Memory reports the errors in the above program:

~~Dr.M~~ Dr. Memory version 1.8.0

~~Dr.M~~

~~Dr.M~~ Error #1: UNINITIALIZED READ: reading 4 byte(s)

~~Dr.M~~ # 0 main [memory_debugger_test.cpp:6]

hi

~~Dr.M~~

~~Dr.M~~ Error #2: UNADDRESSABLE ACCESS beyond heap bounds: writing 4 byte(s)

~~Dr.M~~ # 0 main [memory_debugger_test.cpp:9]

~~Dr.M~~ Note: refers to 0 byte(s) beyond last valid byte in prior malloc

~~Dr.M~~

~~Dr.M~~ Error #3: INVALID HEAP ARGUMENT: allocated with operator new[], freed with operator delete

~~Dr.M~~ # 0 replace_operator_delete [/drmemory_package/common/alloc_replace.c:2684]

~~Dr.M~~ # 1 main [memory_debugger_test.cpp:10]

~~Dr.M~~ Note: memory was allocated here:

~~Dr.M~~ Note: # 0 replace_operator_new_array [/drmemory_package/common/alloc_replace.c:2638]

~~Dr.M~~ Note: # 1 main [memory_debugger_test.cpp:8]

~~Dr.M~~

~~Dr.M~~ Error #4: LEAK 4 bytes

~~Dr.M~~ # 0 replace_operator_new [/drmemory_package/common/alloc_replace.c:2609]

~~Dr.M~~ # 1 main [memory_debugger_test.cpp:5]

~~Dr.M~~

~~Dr.M~~ ERRORS FOUND:

~~Dr.M~~ 1 unique, 1 total unaddressable access(es)

~~Dr.M~~ 1 unique, 1 total uninitialized access(es)
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~~Dr.M~~ 1 unique, 1 total invalid heap argument(s)

~~Dr.M~~ 0 unique, 0 total warning(s)

~~Dr.M~~ 1 unique, 1 total, 4 byte(s) of leak(s)

~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of possible leak(s)

~~Dr.M~~ Details: /DrMemory-MacOS-1.8.0-8/drmemory/logs/DrMemory-a.out.7726.000/results.txt

And the fixed version:

~~Dr.M~~ Dr. Memory version 1.8.0

hi

~~Dr.M~~

~~Dr.M~~ NO ERRORS FOUND:

~~Dr.M~~ 0 unique, 0 total unaddressable access(es)

~~Dr.M~~ 0 unique, 0 total uninitialized access(es)

~~Dr.M~~ 0 unique, 0 total invalid heap argument(s)

~~Dr.M~~ 0 unique, 0 total warning(s)

~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of leak(s)

~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of possible leak(s)

~~Dr.M~~ Details: /DrMemory-MacOS-1.8.0-8/drmemory/logs/DrMemory-a.out.7762.000/results.txt

Note: Dr. Memory on Windows with the Visual Studio compiler may not report a mismatched free() / delete
/ delete [] error (e.g., line 10 of the sample code above). This may happen if optimizations are enabled and the
objects stored in the array are simple and do not have their own dynamically-allocated memory that lead to their
own indirect memory leaks.

6.11 Using Valgrind http://valgrind.org/

And this is how Valgrind reports the same errors:

==31226== Memcheck, a memory error detector

==31226== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.

==31226== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info

==31226== Command: ./a.out

==31226==

==31226== Conditional jump or move depends on uninitialised value(s)

==31226== at 0x40096F: main (memory_debugger_test.cpp:6)

==31226==

hi

==31226== Invalid write of size 4

==31226== at 0x4009A3: main (memory_debugger_test.cpp:9)

==31226== Address 0x4c3f09c is 0 bytes after a block of size 12 alloc'd

==31226== at 0x4A0700A: operator new[](unsigned long) (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==31226== by 0x400996: main (memory_debugger_test.cpp:8)

==31226==

==31226== Mismatched free() / delete / delete []

==31226== at 0x4A07991: operator delete(void*) (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==31226== by 0x4009B4: main (memory_debugger_test.cpp:10)

==31226== Address 0x4c3f090 is 0 bytes inside a block of size 12 alloc'd

==31226== at 0x4A0700A: operator new[](unsigned long) (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==31226== by 0x400996: main (memory_debugger_test.cpp:8)

==31226==

==31226==

==31226== HEAP SUMMARY:

==31226== in use at exit: 4 bytes in 1 blocks

==31226== total heap usage: 2 allocs, 1 frees, 16 bytes allocated

==31226==

==31226== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1

==31226== at 0x4A06965: operator new(unsigned long) (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==31226== by 0x400961: main (memory_debugger_test.cpp:5)

==31226==

==31226== LEAK SUMMARY:

==31226== definitely lost: 4 bytes in 1 blocks
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==31226== indirectly lost: 0 bytes in 0 blocks

==31226== possibly lost: 0 bytes in 0 blocks

==31226== still reachable: 0 bytes in 0 blocks

==31226== suppressed: 0 bytes in 0 blocks

==31226==

==31226== For counts of detected and suppressed errors, rerun with: -v

==31226== Use --track-origins=yes to see where uninitialised values come from

==31226== ERROR SUMMARY: 4 errors from 4 contexts (suppressed: 2 from 2)

And here’s what it looks like after fixing those bugs:

==31252== Memcheck, a memory error detector

==31252== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.

==31252== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info

==31252== Command: ./a.out

==31252==

hi

==31252==

==31252== HEAP SUMMARY:

==31252== in use at exit: 0 bytes in 0 blocks

==31252== total heap usage: 2 allocs, 2 frees, 16 bytes allocated

==31252==

==31252== All heap blocks were freed -- no leaks are possible

==31252==

==31252== For counts of detected and suppressed errors, rerun with: -v

==31252== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2 from 2)

6.12 How to use a memory debugger

• Detailed instructions on installation & use of these tools are available here:
http://www.cs.rpi.edu/academics/courses/spring19/csci1200/memory_debugging.php

• Memory errors (uninitialized memory, out-of-bounds read/write, use after free) may cause seg faults, crashes,
or strange output.

• Memory leaks on the other hand will never cause incorrect output, but your program will be inefficient and
hog system resources. A program with a memory leak may waste so much memory it causes all programs on
the system to slow down significantly or it may crash the program or the whole operating system if the system
runs out of memory (this takes a while on modern computers with lots of RAM & harddrive space).

• For many future homeworks, Submitty will be configured to run your code with Dr. Memory to search for
memory problems and present the output with the submission results. For full credit your program must be
memory error and memory leak free!

• A program that seems to run perfectly fine on one computer may still have significant memory errors. Running
a memory debugger will help find issues that might break your homework on another computer or when
submitted to the homework server.

• Important Note: When these tools find a memory leak, they point to the line of code where this memory
was allocated. These tools does not understand the program logic and thus obviously cannot tell us where it
should have been deleted.

• A final note: STL and other 3rd party libraries are highly optimized and sometimes do sneaky but correct and
bug-free tricks for efficiency that confuse the memory debugger. For example, because the STL string class
uses its own allocator, there may be a warning about memory that is “still reachable” even though you’ve
deleted all your dynamically allocated memory. The memory debuggers have automatic suppressions for some
of these known “false positives”, so you will see this listed as a “suppressed leak”. So don’t worry if you see
those messages.
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6.13 Diagramming Memory Exercises

• Draw a diagram of the heap and stack memory for each segment of code below. Use a “?” to indicate that the
value of the memory is uninitialized. Indicate whether there are any errors or memory leaks during execution
of this code.

class Foo {

public:

double x;

int* y;

};

Foo a;

a.x = 3.14159;

Foo *b = new Foo;

(*b).y = new int[2];

Foo *c = b;

a.y = b->y;

c->y[1] = 7;

b = NULL;

int a[5] = { 10, 11, 12, 13, 14 };

int *b = a + 2;

*b = 7;

int *c = new int[3];

c[0] = b[0];

c[1] = b[1];

c = &(a[3]);

• Write code to produce this diagram:

b:

4.2

2.9

8.6

stack heap

6.5

3.4

5.1

a:

6.14 Solutions to Diagramming Memory Exercises

heap

7
?

x: 3.14
y:

b:
c:

a:

y:
x: ?

NULL

stack

12

14

int* a

int* b

int* c

10

11

13

7

7

13

?

the stackthe heap

Thereisamemoryleakof
3intsinthisprogram.

doublea[3];

double*b=newdouble[3];

a[0]=4.2;

a[1]=8.6;

a[2]=2.9;

b[0]=6.5;

b[1]=5.1;

b[2]=3.4;
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