
Carlos Varela 1

Concurrent and Distributed
Programming Patterns

Carlos Varela
Rensselaer Polytechnic Institute

March 25, 2019

Carlos Varela 2

Overview
•  A motivating application in AstroInformatics
•  Programming techniques and patterns

–  farmer-worker computations,
–  iterative computations,
–  peer-to-peer agent networks,
–  soft real-time: priorities, delays
–  causal connections: named tokens, waitfor property

•  Distributed runtime architecture (World-Wide Computer)
–  architecture and implementation
–  distributed garbage collection

•  Autonomic computing (Internet Operating System)
–  autonomous migration
–  split and merge

•  Distributed systems visualization (OverView)

Carlos Varela 3

Milky Way Structure and Evolution
•  Principal Investigators:

H. Newberg (RPI Astronomy),
M. Magdon-Ismail, B. Szymanski, C. Varela (RPI CS)

•  Students:
M. Newby, M. Arsenault, C. Rice, N. Cole (RPI Astronomy),
T. Desell, J. Doran (RPI CS)

•  Problem Statement:
What is the structure, origin, and evolution of the Milky Way galaxy?
How to analyze data from 10,000 square degrees of the north galactic cap collected

in five optical filters over five years by the Sloan Digital Sky Survey?

•  Applications/Implications:
Astrophysics: origins and evolution of our galaxy; dark matter distribution.

•  Approach:
Experimental data analysis and simulation
To use photometric and spectroscopic data for millions of stars to separate and

describe components of the Milky Way

•  Software:
MilkyWay@Home BOINC project.
Generic Maximum Likelihood Evaluation (GMLE) framework.
N-body Simulations (using CPUs & GPUs.)

Carlos Varela 4

How Do Galaxies Form?

Ben Moore, Inst. Of Theo. Phys., Zurich

Carlos Varela 5

Tidal Streams
•  Smaller galaxy gets tidally

disrupted by larger galaxy

•  Good tracer of galactic potential/
dark matter

•  Sagittarius Dwarf Galaxy currently
being disrupted

•  Three other known streams
thought to be associated with
dwarf galaxies

Kathryn V. Johnston, Wesleyan Univ.

Carlos Varela 6

Sloan Digital Sky Survey Data
v  SDSS

•  ~ 9,600 sq. deg.
•  ~ 287, 000, 000 objects
•  ~ 10.0 TB (images)

v  SEGUE
–  ~ 1,200 sq. deg.
–  ~ 57, 000, 000 objects

v  GAIA (2010-2012)
–  Over one billion estimated stars

http://www.sdss.org

Carlos Varela 7

Map of Rensselaer Grid Clusters

CS
CS /WCL

Multiscale

Bioscience
Cluster

Multipurpose
Cluster

Nanotech

CCNI

Carlos Varela 8

Maximum Likelihood Evaluation on RPI Grid
and BlueGene/L Supercomputer

0.1

1.0

10.0

100.0

1000.0

32 - 4x2 OPT

32 - 4x2 OPT 40 - 4x1 OPT 40 - 4x1 OPT

1x1 OPT 16 - PPC 16 - PPC 16 - PPC 128 256 - Virtual 512 1024 - Virtual

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

MPI/C

SALSA/Java

~100x Speedup
1.5 Day Runtime

~230x Speedup
<1 Day Runtime

2 Minute Evaluation
MLE requires 10,000+ Evaluations

15+ Day Runtime

MilkyWay@Home: Volunteer Computing Grid

February 2010:
1.1Petaflops

April 2010:
1.6Petaflops

Carlos Varela 10

Programming Patterns

Carlos Varela 11

Farmer Worker Computations

•  Most common “Massively Parallel” type of
computation
•  Workers repeatedly request tasks or jobs from
farmer and process them

Carlos Varela 12

Farmer Worker Computations

. . .

Farmer Worker 1 Worker n
get

get

get

get get

rec
rec

rec

rec
rec

process

process

process

Carlos Varela 13

Iterative Computations

•  Common pattern for partial differential equations,
scientific computing and distributed simulation
•  Workers connected to neighbors
•  Data location dependent
•  Workers process an iteration with results from
neighbors, then send results to neighbors
•  Performance bounded by slowest worker

Carlos Varela 14

Iterative Farmer/Worker

. . .

Farmer Worker 1 Worker n
process

process

process

process

process
process

process

Carlos Varela 15

Iterative P2P
Worker 1 Worker 2 Worker 3 Worker 4

comm.

process

comm.

process

comm.

process

Carlos Varela 16

Case Study: Heat Diffusion
Problem

•  A problem that models heat transfer in a solid

•  A two-dimensional mesh is used to represent the problem
data space

•  An Iterative Application

•  Highly synchronized

Carlos Varela 17

P0 P1 P2 Pn-1

N

N
O

rig
in

al
 D

at
a

S
pa

ce

P
ar

al
le

l D
ec

om
po

si
tio

n

Ghost Cells
Data Cells

Boundary Cells

Ghost Cell Exchange

4-pt update stencil

Legend

N

Parallel Decomposition of the
Heat Problem

Carlos Varela 18

Peer-to-Peer Computations

Carlos Varela 19

Peer-to-peer systems (1)
•  Network transparency works well for a small number of nodes; what do we

do when the number of nodes becomes very large?
–  This is what is happening now

•  We need a scalable way to handle large numbers of nodes
•  Peer-to-peer systems provide one solution

–  A distributed system that connects resources located at the edges of the
Internet

–  Resources: storage, computation power, information, etc.
–  Peer software: all nodes are functionally equivalent

•  Dynamic
–  Peers join and leave frequently
–  Failures are unavoidable

Carlos Varela 20

Peer-to-peer systems (2)
•  Unstructured systems

–  Napster (first generation): still had centralized directory
–  Gnutella, Kazaa, … (second generation): neighbor graph, fully decentralized

but no guarantees, often uses superpeer structure
•  Structured overlay networks (third generation)

–  Using non-random topologies
–  Strong guarantees on routing and message delivery
–  Testing on realistically harsh environments (e.g., PlanetLab)
–  DHT (Distributed Hash Table) provides lookup functionality
–  Many examples: Chord, CAN, Pastry, Tapestry, P-Grid, DKS, Viceroy,

Tango, Koorde, etc.

Carlos Varela 21

Examples of P2P networks

•  Hybrid (client/server)
–  Napster

•  Unstructured P2P
–  Gnutella

•  Structured P2P
–  Exponential network
–  DHT (Distributed Hash

Table), e.g., Chord

R = N-1 (hub)

R = 1 (others)

H = 1

R = ? (variable)

H = 1…7

(but no guarantee)

R = log N

H = log N

(with guarantee)

Carlos Varela 22

Properties of
structured overlay networks

•  Scalable
–  Works for any number of nodes

•  Self organizing
–  Routing tables updated with node joins/leaves
–  Routing tables updated with node failures

•  Provides guarantees
–  If operated inside of failure model, then communication is guaranteed with an upper bound on

number of hops
–  Broadcast can be done with a minimum number of messages

•  Provides basic services
–  Name-based communication (point-to-point and group)
–  DHT (Distributed Hash Table): efficient storage and retrieval of (key,value) pairs

Carlos Varela 23

Self organization
•  Maintaining the routing tables

–  Correction-on-use (lazy approach)
–  Periodic correction (eager approach)
–  Guided by assumptions on traffic

•  Cost
–  Depends on structure
–  A typical algorithm, DKS (distributed k-ary search), achieves logarithmic

cost for reconfiguration and for key resolution (lookup)
•  Example of lookup for Chord, the first well-known structured overlay

network

Carlos Varela 24

Chord: lookup illustrated

0

8

4 12

2

6 10

14

1

3

5

7 9

11

13

15

Indicates presence of a node

Given a key, find the value
associated to the key
(here, the value is the IP address of the
node that stores the key)

Assume node 0 searches for the
value associated to key K with virtual
identifier 7

Interval node to be contacted
 [0,1) 0
 [1,2) 6
 [2,4) 6
 [4,8) 6
 [8,0) 12

Carlos Varela 25

Soft Real-Time

Carlos Varela 26

Message Properties

•  SALSA provides message properties to control message
sending behavior:

–  priority
•  To send messages with priority to an actor

–  delay

•  To delay sending a message to an actor for a given time

–  waitfor
•  To delay sending a message to an actor until a token is

available

Carlos Varela 27

Priority Message Sending

•  To (asynchronously) send a message with high
priority:

 a <- book(flight):priority;

 Message is placed at the beginning of the actor’s
mail queue.

Carlos Varela 28

Delayed Message Sending

•  To (asynchronously) send a message after a given
delay in milliseconds:

 a <- book(flight):delay(1000);

 Message is sent after one second has passed.

Carlos Varela 29

Causal Connections

Carlos Varela 30

Synchronized Message Sending

•  To (asynchronously) send a message after another message has been
processed:

 token fundsOk = bank <- checkBalance();
 …

 a <- book(flight):waitfor(fundsOk);

 Message is sent after token has been produced.

Carlos Varela 31

Named Tokens
•  Tokens can be named to enable more loosely-coupled synchronization

–  Example:

token t1 = a1 <- m1();
token t2 = a2 <- m2();
token t3 = a3 <- m3(t1);
token t4 = a4 <- m4(t2);
a <- m(t1,t2,t3,t4);

Sending m(…) to a will be delayed until messages m1()..m4() have been
processed. m1() can proceed concurrently with m2().

Carlos Varela 32

Named Tokens (Multicast)
•  Named tokens enable multicast:

–  Example:

token t1 = a1 <- m1();

for (int i = 0; i < a.length; i++) a[i] <- m(t1);

Sends the result of m1 to each actor in array a.

Carlos Varela 33

Named Tokens (Loops)
•  Named tokens allow for synchronized loops:

–  Example 1:
token t1 = initial;
for (int i = 0; i < n; i++) {

t1 = a <- m(i, t1);
}
Sends m to a n times, passing the result of the previous m as an argument.

–  Example 2 (using waitfor):
token t1 = null;
for (int i = 0; i < a.length; i++) {

t1 = a[i] <- m(i) : waitfor(t1);
}

Sends m(i) to actor a[i], message m(i) will wait for m(i-1) to be processed.

Carlos Varela 34

Join Blocks
•  Join blocks allow for synchronization over multiple messages
•  Join blocks return an array of objects (Object[]), containing the results of

each message sent within the join block. The results are in the same order
as how the messages they were generated by were sent.

–  Example:

token t1 = a1 <- m1();
join {

for (int i = 0; i < a.length; i++) {
a[i] <- m(t1);

}
} @ process(token);

Sends the message m with the result of m1 to each actor in array a. After all the

messages m have been processed, their results are sent as the arguments to
process.

Carlos Varela 35

Current Continuations
•  Current continuations allow for first class access to a message’s

continuation
•  Current continuations facilitate writing recursive computations

–  Example:
int fibonacci(int n) {

if (n == 0) return 0;
else if (n == 1 || n == 2) return 1;
else {

token a = fibonacci(n - 1);
token b = fibonacci(n - 2);
add(a, b) @ currentContinuation;

}
}
Finds the nth fibonacci number. The result of add(a, b) is sent as the return value

of fibonacci to the next message in the continuation.

Carlos Varela 36

Current Continuations (Loops)
•  Current Continuations can also be used to perform recursive loops:

–  Example:
void loop(int n) {

if (n == 0) {
m(n) @
currentContinuation;

} else {
loop(n – 1) @
m(n) @
currentContinuation;

}
}
Sends the messages m(0), m(1), m(2) ...m(n). m(i) is always processed after m(i-1).

Carlos Varela 37

Current Continuations (Delegation)
•  Current Continuations can also be used to delegate tasks to other actors:

–  Example:
String getAnswer(Object question) {

if (question instanceof Question1) {
knowsQ1 <- getAnswer(question) @
currentContinuation;

} else if (question instanceof Question2) {
knowsQ2 <- getAnswer(question) @
currentContinuation;

} else return “don't know!”;
}

If the question is Question1 this will get the answer from actor knowsQ1 and pass

this result as it's token, if the question is Question2 this will get the answer from
actor knowsQ2 and pass that result as it's token, otherwise it will return “don't
know!”.

Carlos Varela 38

Distributed run-time (WWC)

Carlos Varela 39

World-Wide Computer
Architecture

•  SALSA application layer
–  Programming language constructs for actor

communication, migration, and coordination.

•  IOS middleware layer
–  A Resource Profiling Component

•  Captures information about actor and network
topologies and available resources

–  A Decision Component
•  Takes migration, split/merge, or replication

decisions based on profiled information
–  A Protocol Component

•  Performs communication between nodes in
the middleware system

•  WWC run-time layer

–  Theaters provide runtime support for actor execution and
access to local resources

–  Pluggable transport, naming, and messaging services

Carlos Varela 40

WWC Theaters

Theater address
and port. Actor location.

Carlos Varela 41

Scheduling
•  The choice of which actor gets to execute next and for how long is

done by a part of the system called the scheduler

•  An actor is non-blocked if it is processing a message or if its mailbox
is not empty, otherwise the actor is blocked

•  A scheduler is fair if it does not starve a non-blocked actor, i.e. all non-
blocked actors eventually execute

•  Fair scheduling makes it easier to reason about programs and program
composition
–  Otherwise some correct program (in isolation) may never get processing

time when composed with other programs

Carlos Varela 42

Remote Message Sending Protocol

•  Messages between remote actors are sent using the Remote
Message Sending Protocol (RMSP).

•  RMSP is implemented using Java object serialization.
•  RMSP protocol is used for both message sending and actor

migration.
•  When an actor migrates, its locator (UAL) changes but its

name (UAN) does not.

Carlos Varela 43

Universal Actor Naming Protocol

Carlos Varela 44

Universal Actor Naming Protocol

•  UANP includes messages for:

–  Binding actors to UAN, UAL pairs
–  Finding the locator of a universal actor given its UAN
–  Updating the locator of a universal actor as it migrates
–  Removing a universal actor entry from the naming service

•  SALSA programmers need not use UANP directly in
programs. UANP messages are transparently sent by
WWC run-time system.

Carlos Varela 45

UANP Implementations

•  Default naming service implementation stores UAN to UAL mapping in name

servers as defined in UANs.

–  Name server failures may induce universal actor unreachability.

•  Distributed (Chord-based) implementation uses consistent hashing and a ring
of connected servers for fault-tolerance. For more information, see:

Camron Tolman and Carlos Varela. A Fault-Tolerant Home-Based Naming Service
For Mobile Agents. In Proceedings of the XXXI Conferencia Latinoamericana de
Informática (CLEI), Cali, Colombia, October 2005.

Tolman C. A Fault-Tolerant Home-Based Naming Service for Mobile Agents. Master's
Thesis, Rensselaer Polytechnic Institute, April 2003.

Carlos Varela 46

Actor Garbage Collection

•  Implemented since SALSA 1.0 using pseudo-root
approach.

•  Includes distributed cyclic garbage collection.
•  For more details, please see:

Wei-Jen Wang and Carlos A. Varela. Distributed Garbage Collection for Mobile Actor
Systems: The Pseudo Root Approach. In Proceedings of the First International
Conference on Grid and Pervasive Computing (GPC 2006), Taichung, Taiwan, May
2006. Springer-Verlag LNCS.

Wei-Jen Wang and Carlos A. Varela. A Non-blocking Snapshot Algorithm for Distributed
Garbage Collection of Mobile Active Objects. Technical report 06-15, Dept. of
Computer Science, R.P.I., October 2006.

Carlos Varela 47

Challenge 1: Actor GC vs. Object GC

Blocked ActorRoot Actor Unblocked Actor Reference

1 2 3 4

5 6 7

Actor Reference Graph

Root Object Object Reference

1 2 3 4

5 6 7

Passive Object Reference Graph

8

9

8

9

Live Actor

Live Object

Carlos Varela 48

Challenge 2: Non-blocking
communication

•  Following references to mark
live actors is not safe!

A A A A

B B B BC C C C

Stage 1 Stage 2 Stage 3 Stage 4

Blocked Actor Unblocked Actor Reference Message

An example of mutation and asynchronous delivery of messages

Carlos Varela 49

Challenge 2: Non-blocking
communication

•  Following references to mark
live actors is not safe!

•  What can we do?
–  We can protect the reference

from deletion and mark the
sender live until the sender
knows the message has arrived

A

B

Blocked
Actor

Message Reference Marked
Live
Actor

Protected
Reference

Carlos Varela 50

Challenge 2: Non-blocking
communication (continued)

•  How can we guarantee the safety of
an actor referenced by a message?

•  The solution is to protect the
reference from deletion and mark
the sender live until the sender
knows the message has arrived

A

C B

Blocked
Actor

Message Reference Marked
Live
Actor

Protected
Reference

Carlos Varela 51

Challenge 3: Distribution and Mobility
•  What if an actor is remotely referenced?

–  We can maintain an inverse reference
list (only visible to the garbage
collector) to indicate whether an actor is
referenced.

–  The inverse reference registration must
be based on non-blocking and non-
First-In-First-Out communication!

–  Three operations change inverse
references: actor creation, reference
passing, and reference deletion.

A A B

Atomic
creation

Inverse
reference

reference Actor

Actor Creation

Carlos Varela 52

Challenge 3: Distribution and Mobility
(continued)

•  What if an actor is remotely referenced?
–  We can maintain an inverse reference

list (only visible to the garbage
collector) to indicate whether an actor is
referenced.

–  The inverse reference registration must
be based on non-blocking and non-
First-In-First-Out communication!

–  Three operations are affected: actor
creation, reference passing, and
reference deletion.

A

Msg

B C

Reference Passing

Blocked
Actor

Message Marked
Live
Actor

Reference
Protected
Reference

Reference in
Message

Inverse
Reference

Unblocked
Actor

Carlos Varela 53

Challenge 3: Distribution and Mobility
(continued)

•  What if an actor is remotely referenced?
–  We can maintain an inverse reference

list (only visible to the garbage
collector) to indicate whether an actor is
referenced.

–  The inverse reference registration must
be based on non-blocking and non-
First-In-First-Out communication!

–  Three operations are involved: actor
creation, reference passing, and
reference deletion.

A

Inverse Reference
Registration

B C

Ack

Msg

Reference Passing

Blocked
Actor

Message Marked
Live
Actor

Reference
Protected
Reference

Reference in
Message

Inverse
Reference

Unblocked
Actor

Carlos Varela 54

Challenge 3: Distribution and Mobility
(continued)

•  What if an actor is remotely referenced?
–  We can maintain an inverse reference

list (only visible to the garbage
collector) to indicate whether an actor is
referenced.

–  The inverse reference registration must
be based on non-blocking and non-
First-In-First-Out communication!

–  Three operations are involved: actor
creation, reference passing, and
reference deletion.

A

ACK

B C

ACK

Reference Passing

Blocked
Actor

Message Marked
Live
Actor

Reference
Protected
Reference

Reference in
Message

Inverse
Reference

Unblocked
Actor

Carlos Varela 55

Challenge 3: Distribution and Mobility
(continued)

•  What if an actor is remotely referenced?
–  We can maintain an inverse reference

list (only visible to the garbage
collector) to indicate whether an actor is
referenced.

–  The inverse reference registration must
be based on non-blocking and non-
First-In-First-Out communication!

–  Three operations are involved: actor
creation, reference passing, and
reference deletion.

A

B C

Reference Passing

Blocked
Actor

Message Marked
Live
Actor

Reference
Protected
Reference

Reference in
Message

Inverse
Reference

Unblocked
Actor

Carlos Varela 56

Challenge 3: Distribution and Mobility
(continued)

•  What if an actor is remotely referenced?
–  We can maintain an inverse reference

list (only visible to the garbage
collector) to indicate whether an actor is
referenced.

–  The inverse reference registration must
be based on non-blocking and non-
First-In-First-Out communication!

–  Three operations are involved: actor
creation, reference passing, and
reference deletion.

A B

Reference Deletion

ACK-DEL

Blocked
Actor

Message Marked
Live
Actor

Reference
Protected
Reference

Reference in
Message

Inverse
Reference

Unblocked
Actor

Carlos Varela 57

The Pseudo Root Approach
•  Pseudo roots:

–  Treat unblocked actors, migrating actors, and roots as pseudo roots.
–  Map in-transit messages and references into protected references and

pseudo roots
–  Use inverse reference list (only visible to garbage collectors) to identify

remotely referenced actors
•  Actors which are not reachable from any pseudo root are garbage.

Carlos Varela 58

Autonomic Computing (IOS)

Carlos Varela 59

Middleware for Autonomous
Computing

•  Middleware
–  A software layer between distributed applications and

operating systems.
–  Alleviates application programmers from directly dealing

with distribution issues
•  Heterogeneous hardware/O.S.s
•  Load balancing
•  Fault-tolerance
•  Security
•  Quality of service

•  Internet Operating System (IOS)
–  A decentralized framework for adaptive, scalable execution
–  Modular architecture to evaluate different distribution and

reconfiguration strategies

K. El Maghraoui, T. Desell, B. Szymanski, and C. Varela, “The Internet Operating System:
Middleware for Adaptive Distributed Computing”, International Journal of High
Performance Computing and Applications, 2006.

K. El Maghraoui, T. Desell, B. Szymanski, J. Teresco and C. Varela, “Towards a Middleware
Framework for Dynamically Reconfigurable Scientific Computing”, Grid Computing and
New Frontiers of High Performance Processing, Elsevier 2005.

T. Desell, K. El Maghraoui, and C. Varela, “Load Balancing of Autonomous Actors over Dynamic
Networks”, HICSS-37 Software Technology Track, Hawaii, January 2004. 10pp.

Carlos Varela 60

Middleware Architecture

Carlos Varela 61

IOS Architecture

•  IOS middleware layer

–  A Resource Profiling Component
•  Captures information about actor and network topologies and

available resources

–  A Decision Component
•  Takes migration, split/merge, or replication decisions based on

profiled information

–  A Protocol Component
•  Performs communication with other agents in virtual network (e.g.,

peer-to-peer, cluster-to-cluster, centralized.)

Carlos Varela 62

A General Model for Weighted Resource-
Sensitive Work-Stealing (WRS)

•  Given:
A set of resources, R = {r0 … rn}
A set of actors, A = {a0 … an}
ω is a weight, based on importance of the resource r to the performance of a set of actors A

0 ≤ ω(r,A) ≤ 1
Σall r ω(r,A) = 1

α(r,f) is the amount of resource r available at foreign node f
υ(r,l,A) is the amount of resource r used by actors A at local node l
M(A,l,f) is the estimated cost of migration of actors A from l to f
L(A) is the average life expectancy of the set of actors A

•  The predicted increase in overall performance Γ gained by migrating A from l to f,
where Γ ≤ 1:

Δ(r,l,f,A) = (α(r,f) – υ(r,l,A)) / (α(r,f) + υ(r,l,A))
Γ = Σall r (ω(r,A) * Δ(r,l,f,A)) – M(A,l,f)/(10+log L(A))

•  When work requested by f, migrate actor(s) A with greatest predicted increase in overall
performance, if positive.

Carlos Varela 63

Impact of Process/Actor
Granularity

0

50

100

150

200

250

300

350

2 3 4 5 6 8 10 12 20 30 40 60

58.14 38.76 29.07 23.26 19.38 14.54 11.63 9.69 5.81 3.88 2.91 1.94

Number of Processes/ Process Data Size (KB)

T
h

ro
u

g
h

p
u

t
(I

te
ra

ti
o

n
s

/s
)

Experiments on a dual-processor node (SUN Blade 1000)

Carlos Varela 64

Component Malleability
•  New type of reconfiguration:

–  Applications can dynamically change component granularity
•  Malleability can provide many benefits for HPC

applications:
–  Can more adequately reconfigure applications in response to a

dynamically changing environment:
•  Can scale application in response to dynamically joining

resources to improve performance.
•  Can provide soft fault-tolerance in response to dynamically

leaving resources.
–  Can be used to find the ideal granularity for different architectures.
–  Easier programming of concurrent applications, as parallelism can

be provided transparently.

Carlos Varela 65

Component Malleability

•  Modifying application component granularity dynamically (at run-
time) to improve scalability and performance.

•  SALSA-based malleable actor implementation.
•  MPI-based malleable process implementation.
•  IOS decision module to trigger split and merge reconfiguration.
•  For more details, please see:

El Maghraoui, Desell, Szymanski and Varela,“Dynamic Malleability in MPI

Applications”, CCGrid 2007, Rio de Janeiro, Brazil, May 2007, nominated
for Best Paper Award.

Carlos Varela 66

Distributed Systems Visualization
(OverView)

Carlos Varela 67

Distributed Systems Visualization

•  Generic online Java-based distributed systems visualization tool
•  Uses a declarative Entity Specification Language (ESL)
•  Instruments byte-code to send events to visualization layer.
•  For more details, please see:

T. Desell, H. Iyer, A. Stephens, and C. Varela. OverView: A Framework for Generic Online
Visualization of Distributed Systems. In Proceedings of the European Joint Conferences
on Theory and Practice of Software (ETAPS 2004), eclipse Technology eXchange (eTX)
Workshop, Barcelona, Spain, March 2004.

Carlos Varela 68

Carlos Varela 69

Final Remarks
•  Thanks!

•  Visit our web pages:

–  SALSA: http://wcl.cs.rpi.edu/salsa/

–  IOS: http://wcl.cs.rpi.edu/ios/

–  OverView: http://wcl.cs.rpi.edu/overview/

–  MilkyWay@Home: http://milkyway.cs.rpi.edu/

•  Questions?

Carlos Varela 70

Exercises

8.  Create a Producer-Consumer pattern in SALSA and play
with message delays to ensure that the consumer actor
mailbox does not create a memory problem.

9.  Create an autonomous iterative application and run it
within IOS so that the management of actor placement is
triggered by the middleware.

10. Execute the Cell example with OverView visualizing
actor migration.

