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Overview 
•  A motivating application in AstroInformatics 
•  Programming techniques and patterns 

–  farmer-worker computations,  
–  iterative computations,  
–  peer-to-peer agent networks,  
–  soft real-time:  priorities, delays 
–  causal connections:  named tokens, waitfor property 

•  Distributed runtime architecture (World-Wide Computer) 
–  architecture and implementation 
–  distributed garbage collection 

•  Autonomic computing (Internet Operating System) 
–  autonomous migration 
–  split and merge 

•  Distributed systems visualization (OverView) 
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Milky Way Structure and Evolution 
•  Principal Investigators: 

H. Newberg (RPI Astronomy),  
M. Magdon-Ismail, B. Szymanski, C. Varela (RPI CS) 

•  Students: 
M. Newby, M. Arsenault, C. Rice, N. Cole (RPI Astronomy),  
T. Desell, J. Doran (RPI CS) 

•  Problem Statement: 
What is the structure, origin, and evolution of the Milky Way galaxy? 
How to analyze data from 10,000 square degrees of the north galactic cap collected 

in five optical filters over five years by the Sloan Digital Sky Survey? 

•  Applications/Implications: 
Astrophysics: origins and evolution of our galaxy; dark matter distribution. 

•  Approach: 
Experimental data analysis and simulation 
To use photometric and spectroscopic data for millions of stars to separate and 

describe components of the Milky Way 

•  Software:  
MilkyWay@Home BOINC project. 
Generic Maximum Likelihood Evaluation (GMLE) framework. 
N-body Simulations (using CPUs & GPUs.) 
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How Do Galaxies Form? 

Ben Moore, Inst. Of Theo. Phys., Zurich 



Carlos Varela 5 

Tidal Streams 
•  Smaller galaxy gets tidally 

disrupted by larger galaxy 

•  Good tracer of galactic potential/
dark matter 

•  Sagittarius Dwarf Galaxy currently 
being disrupted 

•  Three other known streams 
thought to be associated with 
dwarf galaxies 

Kathryn V. Johnston, Wesleyan Univ. 
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Sloan Digital Sky Survey Data 
v  SDSS 

•  ~ 9,600 sq. deg. 
•  ~ 287, 000, 000 objects 
•  ~ 10.0 TB (images) 

v  SEGUE 
–  ~ 1,200 sq. deg.  
–  ~ 57, 000, 000 objects 

v  GAIA (2010-2012) 
–  Over one billion estimated stars 

http://www.sdss.org 
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Map of Rensselaer Grid Clusters 
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Maximum Likelihood Evaluation on RPI Grid 
and BlueGene/L Supercomputer 
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MilkyWay@Home: Volunteer Computing Grid 

February 2010: 
1.1Petaflops

April 2010: 
1.6Petaflops
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Programming Patterns 
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Farmer Worker Computations 

•  Most common “Massively Parallel” type of 
computation 
•  Workers repeatedly request tasks or jobs from 
farmer and process them 
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Farmer Worker Computations 
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Iterative Computations 

•  Common pattern for partial differential equations, 
scientific computing and distributed simulation 
•  Workers connected to neighbors 
•  Data location dependent 
•  Workers process an iteration with results from 
neighbors, then send results to neighbors 
•  Performance bounded by slowest worker 
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Iterative Farmer/Worker 
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Iterative P2P 
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process 
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Case Study: Heat Diffusion 
Problem 

•  A problem that models heat transfer in a solid 

•  A two-dimensional mesh is used to represent the problem 
data space 

•  An Iterative Application 

•  Highly synchronized 
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Peer-to-Peer Computations 
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Peer-to-peer systems (1) 
•  Network transparency works well for a small number of nodes; what do we 

do when the number of nodes becomes very large? 
–  This is what is happening now 

•  We need a scalable way to handle large numbers of nodes 
•  Peer-to-peer systems provide one solution 

–  A distributed system that connects resources located at the edges of the 
Internet 

–  Resources: storage, computation power, information, etc. 
–  Peer software: all nodes are functionally equivalent 

•  Dynamic 
–  Peers join and leave frequently 
–  Failures are unavoidable 
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Peer-to-peer systems (2) 
•  Unstructured systems 

–  Napster (first generation): still had centralized directory 
–  Gnutella, Kazaa, … (second generation): neighbor graph, fully decentralized 

but no guarantees, often uses superpeer structure 
•  Structured overlay networks (third generation) 

–  Using non-random topologies 
–  Strong guarantees on routing and message delivery 
–  Testing on realistically harsh environments (e.g., PlanetLab) 
–  DHT (Distributed Hash Table) provides lookup functionality 
–  Many examples: Chord, CAN, Pastry, Tapestry, P-Grid, DKS, Viceroy, 

Tango, Koorde, etc. 
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Examples of P2P networks 

•  Hybrid (client/server) 
–  Napster 
 

•  Unstructured P2P 
–  Gnutella 
 

•  Structured P2P 
–  Exponential network 
–  DHT (Distributed Hash 

Table), e.g., Chord 

R = N-1 (hub) 

R = 1 (others) 

H = 1 

R = ? (variable) 

H = 1…7 

(but no guarantee) 

R = log N 

H = log N 

(with guarantee) 
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Properties of 
structured overlay networks 

•  Scalable 
–  Works for any number of nodes 

•  Self organizing 
–  Routing tables updated with node joins/leaves 
–  Routing tables updated with node failures 

•  Provides guarantees 
–  If operated inside of failure model, then communication is guaranteed with an upper bound on 

number of hops 
–  Broadcast can be done with a minimum number of messages 

•  Provides basic services 
–  Name-based communication (point-to-point and group) 
–  DHT (Distributed Hash Table): efficient storage and retrieval of (key,value) pairs 
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Self organization 
•  Maintaining the routing tables 

–  Correction-on-use (lazy approach) 
–  Periodic correction (eager approach) 
–  Guided by assumptions on traffic 

•  Cost 
–  Depends on structure 
–  A typical algorithm, DKS (distributed k-ary search), achieves logarithmic 

cost for reconfiguration and for key resolution (lookup) 
•  Example of lookup for Chord, the first well-known structured overlay 

network 
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Chord: lookup illustrated 
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Soft Real-Time 
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Message Properties 

•  SALSA provides message properties to control message 
sending behavior: 

–  priority 
•  To send messages with priority to an actor 

 
–  delay 

•  To delay sending a message to an actor for a given time 

–  waitfor 
•  To delay sending a message to an actor until a token is 

available 
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Priority Message Sending 

•  To (asynchronously) send a message with high 
priority: 

 
  a <- book(flight):priority; 

 Message is placed at the beginning of the actor’s 
mail queue. 
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Delayed Message Sending 

•  To (asynchronously) send a message after a given 
delay in milliseconds: 

 
  a <- book(flight):delay(1000); 

 Message is sent after one second has passed. 
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Causal Connections 
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Synchronized Message Sending 

•  To (asynchronously) send a message after another message has been 
processed: 

 

  token fundsOk = bank <- checkBalance(); 
  … 

  a <- book(flight):waitfor(fundsOk); 

 Message is sent after token has been produced. 
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Named Tokens 
•  Tokens can be named to enable more loosely-coupled synchronization 

–  Example: 

token t1 = a1 <- m1();  
token t2 = a2 <- m2(); 
token t3 = a3 <- m3( t1 );  
token t4 = a4 <- m4( t2 ); 
a <- m(t1,t2,t3,t4); 
 

Sending m(…) to a will be delayed until messages m1()..m4()  have been 
processed.   m1() can proceed concurrently with m2(). 
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Named Tokens (Multicast) 
•  Named tokens enable multicast: 
 

–  Example: 
 

token t1 = a1 <- m1();  
 
for (int i = 0; i < a.length; i++) a[i] <- m( t1 ); 
 
Sends the result of m1 to each actor in array a. 
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Named Tokens (Loops) 
•  Named tokens allow for synchronized loops: 
 

–  Example 1: 
token t1 = initial;  
for (int i = 0; i < n; i++) { 

t1 = a <- m( i, t1 ); 
} 
Sends m to a n times, passing the result of the previous m as an argument. 
 

–  Example 2 (using waitfor): 
token t1 = null;  
for (int i = 0; i < a.length; i++) { 

t1 = a[i] <- m( i ) : waitfor( t1 ); 
} 

Sends m(i) to actor a[i], message m(i) will wait for m(i-1) to be processed. 
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Join Blocks 
•  Join blocks allow for synchronization over multiple messages 
•  Join blocks return an array of objects (Object[]), containing the results of 

each message sent within the join block.  The results are in the same order 
as how the messages they were generated by were sent. 

 
–  Example: 

token t1 = a1 <- m1();  
join { 

for (int i = 0; i < a.length; i++) { 
a[i] <- m( t1 ); 

} 
} @ process( token ); 
 
Sends the message m with the result of m1 to each actor in array a.  After all the 

messages m have been processed, their results are sent as the arguments to 
process.  
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Current Continuations 
•  Current continuations allow for first class access to a message’s 

continuation 
•  Current continuations facilitate writing recursive computations 

–  Example: 
int fibonacci(int n) { 

if (n == 0) return 0; 
else if (n == 1 || n == 2) return 1; 
else { 

token a = fibonacci(n - 1); 
token b = fibonacci(n - 2); 
add(a, b) @ currentContinuation; 

} 
} 
Finds the nth fibonacci number.  The result of add(a, b) is sent as the return value 

of fibonacci to the next message in the continuation. 
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Current Continuations (Loops) 
•  Current Continuations can also be used to perform recursive loops: 

–  Example: 
void loop(int n) { 

if (n == 0) { 
m(n) @ 
currentContinuation; 

} else { 
loop(n – 1) @ 
m(n) @ 
currentContinuation; 

} 
} 
Sends the messages m(0), m(1), m(2) ...m(n).  m(i) is always processed after m(i-1). 
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Current Continuations (Delegation) 
•  Current Continuations can also be used to delegate tasks to other actors: 

–  Example: 
String getAnswer(Object question) { 

if (question instanceof Question1) { 
knowsQ1 <- getAnswer(question) @ 
currentContinuation; 

} else if (question instanceof Question2) { 
knowsQ2 <- getAnswer(question) @ 
currentContinuation; 

} else return “don't know!”; 
} 
 
If the question is Question1 this will get the answer from actor knowsQ1 and pass 

this result as it's token, if the question is Question2 this will get the answer from 
actor knowsQ2 and pass that result as it's token, otherwise it will return “don't 
know!”. 
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Distributed run-time (WWC) 
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World-Wide Computer 
Architecture 

•  SALSA application layer 
–  Programming language constructs for actor 

communication, migration, and coordination. 
 

•  IOS middleware layer 
–  A Resource Profiling Component 

•  Captures information about actor and network 
topologies and available resources 

–  A Decision Component 
•  Takes migration, split/merge, or replication 

decisions based on profiled information 
–  A Protocol Component 

•  Performs communication between nodes in 
the middleware system 

 
•  WWC run-time layer 

–  Theaters provide runtime support for actor execution and 
access to local resources 

–  Pluggable transport, naming, and messaging services 
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WWC Theaters 

Theater address 
and port. Actor location. 
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Scheduling 
•  The choice of which actor gets to execute next and for how long is 

done by a part of the system called the scheduler 

•  An actor is non-blocked if it is processing a message or if its mailbox 
is not empty, otherwise the actor is blocked 

•  A scheduler is fair if it does not starve a non-blocked actor, i.e. all non-
blocked actors eventually execute 

•  Fair scheduling makes it easier to reason about programs and program 
composition 
–  Otherwise some correct program (in isolation) may never get processing 

time when composed with other programs 
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Remote Message Sending Protocol 

•  Messages between remote actors are sent using the Remote 
Message Sending Protocol (RMSP). 

•  RMSP is implemented using Java object serialization. 
•  RMSP protocol is used for both message sending and actor 

migration. 
•  When an actor migrates, its locator (UAL) changes but its 

name (UAN) does not. 
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Universal Actor Naming Protocol 
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Universal Actor Naming Protocol 

•  UANP includes messages for: 

–  Binding actors to UAN, UAL pairs 
–  Finding the locator of a universal actor given its UAN 
–  Updating the locator of a universal actor as it migrates 
–  Removing a universal actor entry from the naming service 

•  SALSA programmers need not use UANP directly in 
programs.  UANP messages are transparently sent by 
WWC run-time system. 
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UANP Implementations 

 
•  Default naming service implementation stores UAN to UAL mapping in name 

servers as defined in UANs. 
 

–  Name server failures may induce universal actor unreachability. 

•  Distributed (Chord-based) implementation uses consistent hashing and a ring 
of connected servers for fault-tolerance.  For more information, see: 

Camron Tolman and Carlos Varela. A Fault-Tolerant Home-Based Naming Service 
For Mobile Agents. In Proceedings of the XXXI Conferencia Latinoamericana de 
Informática (CLEI), Cali, Colombia, October 2005.  

Tolman C. A Fault-Tolerant Home-Based Naming Service for Mobile Agents. Master's 
Thesis, Rensselaer Polytechnic Institute, April 2003. 
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Actor Garbage Collection 

•  Implemented since SALSA 1.0 using pseudo-root 
approach. 

•  Includes distributed cyclic garbage collection. 
•  For more details, please see: 

Wei-Jen Wang and Carlos A. Varela. Distributed Garbage Collection for Mobile Actor 
Systems: The Pseudo Root Approach. In Proceedings of the First International 
Conference on Grid and Pervasive Computing (GPC 2006), Taichung, Taiwan, May 
2006. Springer-Verlag LNCS. 

Wei-Jen Wang and Carlos A. Varela. A Non-blocking Snapshot Algorithm for Distributed 
Garbage Collection of Mobile Active Objects. Technical report 06-15, Dept. of 
Computer Science, R.P.I., October 2006.  
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Challenge 1: Actor GC vs. Object GC 

Blocked ActorRoot Actor Unblocked Actor Reference
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Challenge 2:  Non-blocking 
communication 

•  Following references to mark 
live actors is not safe!  

A A A A

B B B BC C C C

Stage 1 Stage 2 Stage 3 Stage 4

Blocked Actor Unblocked Actor Reference Message

An example of mutation and asynchronous delivery of messages
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Challenge 2:  Non-blocking 
communication 

•  Following references to mark 
live actors is not safe!  

•  What can we do? 
–  We can protect the reference 

from deletion and mark the 
sender live until the sender 
knows the message has arrived  

A 

B 

Blocked 
Actor 

Message Reference Marked 
Live 
Actor 

Protected 
Reference 
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Challenge 2:  Non-blocking 
communication (continued) 

•  How can we guarantee the safety of 
an actor referenced by a message? 

•  The solution is to protect the 
reference from deletion and mark 
the sender live until the sender 
knows the message has arrived  

A 

C B 

Blocked 
Actor 

Message Reference Marked 
Live 
Actor 

Protected 
Reference 



Carlos Varela 51 

Challenge 3: Distribution and Mobility 
•  What if an actor is remotely referenced? 

–  We can maintain an inverse reference 
list (only visible to the garbage 
collector) to indicate whether an actor is 
referenced. 

–  The inverse reference registration must 
be based on non-blocking and non-
First-In-First-Out communication! 

–  Three operations change inverse 
references: actor creation, reference 
passing, and reference deletion. 

A A B 

Atomic 
creation 

Inverse 
reference 

reference Actor 

Actor Creation 
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Challenge 3: Distribution and Mobility 
(continued) 

•  What if an actor is remotely referenced? 
–  We can maintain an inverse reference 

list (only visible to the garbage 
collector) to indicate whether an actor is 
referenced. 

–  The inverse reference registration must 
be based on non-blocking and non-
First-In-First-Out communication! 

–  Three operations are affected: actor 
creation, reference passing, and 
reference deletion. 

A 

Msg 

B C 

Reference Passing 

Blocked 
Actor 

Message Marked 
Live 
Actor 

Reference 
Protected 
Reference 

Reference in 
Message 

Inverse 
Reference 

Unblocked  
Actor 
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Challenge 3: Distribution and Mobility 
(continued) 

•  What if an actor is remotely referenced? 
–  We can maintain an inverse reference 

list (only visible to the garbage 
collector) to indicate whether an actor is 
referenced. 

–  The inverse reference registration must 
be based on non-blocking and non-
First-In-First-Out communication! 

–  Three operations are involved: actor 
creation, reference passing, and 
reference deletion. 

A 

Inverse Reference 
Registration 

B C 

Ack 

Msg 

Reference Passing 

Blocked 
Actor 

Message Marked 
Live 
Actor 

Reference 
Protected 
Reference 

Reference in 
Message 

Inverse 
Reference 

Unblocked  
Actor 
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Challenge 3: Distribution and Mobility 
(continued) 

•  What if an actor is remotely referenced? 
–  We can maintain an inverse reference 

list (only visible to the garbage 
collector) to indicate whether an actor is 
referenced. 

–  The inverse reference registration must 
be based on non-blocking and non-
First-In-First-Out communication! 

–  Three operations are involved: actor 
creation, reference passing, and 
reference deletion. 

A 

ACK 

B C 

ACK 

Reference Passing 

Blocked 
Actor 

Message Marked 
Live 
Actor 

Reference 
Protected 
Reference 

Reference in 
Message 

Inverse 
Reference 

Unblocked  
Actor 
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Challenge 3: Distribution and Mobility 
(continued) 

•  What if an actor is remotely referenced? 
–  We can maintain an inverse reference 

list (only visible to the garbage 
collector) to indicate whether an actor is 
referenced. 

–  The inverse reference registration must 
be based on non-blocking and non-
First-In-First-Out communication! 

–  Three operations are involved: actor 
creation, reference passing, and 
reference deletion. 

A 

B C 

Reference Passing 

Blocked 
Actor 

Message Marked 
Live 
Actor 

Reference 
Protected 
Reference 

Reference in 
Message 

Inverse 
Reference 

Unblocked  
Actor 
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Challenge 3: Distribution and Mobility 
(continued) 

•  What if an actor is remotely referenced? 
–  We can maintain an inverse reference 

list (only visible to the garbage 
collector) to indicate whether an actor is 
referenced. 

–  The inverse reference registration must 
be based on non-blocking and non-
First-In-First-Out communication! 

–  Three operations are involved: actor 
creation, reference passing, and 
reference deletion. 

A B 

Reference Deletion 

ACK-DEL 

Blocked 
Actor 

Message Marked 
Live 
Actor 

Reference 
Protected 
Reference 

Reference in 
Message 

Inverse 
Reference 

Unblocked  
Actor 
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The Pseudo Root Approach 
•  Pseudo roots: 

–  Treat unblocked actors, migrating actors, and roots as pseudo roots. 
–  Map in-transit messages and references into protected references and 

pseudo roots 
–  Use inverse reference list (only visible to garbage collectors) to identify 

remotely referenced actors  
•  Actors which are not reachable from any pseudo root are garbage. 
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Autonomic Computing (IOS) 
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Middleware for Autonomous 
Computing 

•  Middleware 
–  A software layer between distributed applications and 

operating systems. 
–  Alleviates application programmers from directly dealing 

with distribution issues 
•  Heterogeneous hardware/O.S.s 
•  Load balancing 
•  Fault-tolerance 
•  Security 
•  Quality of service 

•  Internet Operating System (IOS) 
–  A decentralized framework for adaptive, scalable execution 
–  Modular architecture to evaluate different distribution and 

reconfiguration strategies 

K. El Maghraoui, T. Desell, B. Szymanski, and C. Varela, “The Internet Operating System:  
Middleware for Adaptive Distributed Computing”, International Journal of High 
Performance Computing and Applications, 2006. 

K. El Maghraoui, T. Desell, B. Szymanski, J. Teresco and C. Varela, “Towards a Middleware 
Framework for Dynamically Reconfigurable Scientific Computing”, Grid Computing and 
New Frontiers of High Performance Processing, Elsevier 2005.  

T. Desell, K. El Maghraoui, and C. Varela, “Load Balancing of Autonomous Actors over Dynamic 
Networks”, HICSS-37 Software Technology Track, Hawaii, January 2004. 10pp. 
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Middleware Architecture 
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IOS Architecture 
 
•  IOS middleware layer 

–  A Resource Profiling Component 
•  Captures information about actor and network topologies and 

available resources 

–  A Decision Component 
•  Takes migration, split/merge, or replication decisions based on 

profiled information 

–  A Protocol Component 
•  Performs communication with other agents in virtual network (e.g., 

peer-to-peer, cluster-to-cluster, centralized.) 
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A General Model for Weighted Resource-
Sensitive Work-Stealing (WRS) 

•  Given: 
A set of resources, R = {r0 … rn} 
A set of actors, A = {a0 … an} 
ω is a weight, based on importance of the resource r to the performance of a set of actors A 
 

0 ≤ ω(r,A) ≤ 1 
Σall r ω(r,A) = 1 
 

α(r,f) is the amount of resource r available at foreign node f 
υ(r,l,A) is the amount of resource r used by actors A at local node l 
M(A,l,f) is the estimated cost of migration of actors A from l to f 
L(A) is the average life expectancy of the set of actors A 

•  The predicted increase in overall performance Γ gained by migrating A from l to f, 
where Γ ≤ 1: 

 
Δ(r,l,f,A) = (α(r,f) – υ(r,l,A)) / (α(r,f) + υ(r,l,A)) 
Γ = Σall r (ω(r,A) * Δ(r,l,f,A)) – M(A,l,f)/(10+log L(A)) 
 

•  When work requested by f, migrate actor(s) A with greatest predicted increase in overall 
performance, if positive. 
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Impact of Process/Actor 
Granularity 
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Component Malleability 
•  New type of reconfiguration: 

–  Applications can dynamically change component granularity 
•  Malleability can provide many benefits for HPC 

applications: 
–  Can more adequately reconfigure applications in response to a 

dynamically changing environment: 
•  Can scale application in response to dynamically joining 

resources to improve performance. 
•  Can provide soft fault-tolerance in response to dynamically 

leaving resources. 
–  Can be used to find the ideal granularity for different architectures. 
–  Easier programming of concurrent applications, as parallelism can 

be provided transparently. 
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Component Malleability 

•  Modifying application component granularity dynamically (at run-
time) to improve scalability and performance. 

•  SALSA-based malleable actor implementation. 
•  MPI-based malleable process implementation. 
•  IOS decision module to trigger split and merge reconfiguration. 
•  For more details, please see: 

 
El Maghraoui, Desell, Szymanski and Varela,“Dynamic Malleability in MPI 

Applications”, CCGrid 2007, Rio de Janeiro, Brazil, May 2007, nominated 
for Best Paper Award. 
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Distributed Systems Visualization 
(OverView) 
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Distributed Systems Visualization 

•  Generic online Java-based distributed systems visualization tool 
•  Uses a declarative Entity Specification Language (ESL) 
•  Instruments byte-code to send events to visualization layer. 
•  For more details, please see: 

T. Desell, H. Iyer, A. Stephens, and C. Varela. OverView: A Framework for Generic Online 
Visualization of Distributed Systems. In Proceedings of the European Joint Conferences 
on Theory and Practice of Software (ETAPS 2004), eclipse Technology eXchange (eTX) 
Workshop, Barcelona, Spain, March 2004.  
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Final Remarks 
•  Thanks! 

•  Visit our web pages: 

–  SALSA: http://wcl.cs.rpi.edu/salsa/ 

–  IOS: http://wcl.cs.rpi.edu/ios/ 

–  OverView: http://wcl.cs.rpi.edu/overview/ 

–  MilkyWay@Home: http://milkyway.cs.rpi.edu/ 

•  Questions? 
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Exercises 

8.  Create a Producer-Consumer pattern in SALSA and play 
with message delays to ensure that the consumer actor 
mailbox does not create a memory problem. 

9.  Create an autonomous iterative application and run it  
within IOS so that the management of actor placement is 
triggered by the middleware. 

10. Execute the Cell example with OverView visualizing 
actor migration. 

 


