
CSCI-1200 Data Structures — Spring 2020
Homework 2 — Decathlon Classes

In this assignment you will parse and compute statistics from the results of the Olympics track and field
decathlon competition. Scoring and determining the winner of this competition is a bit involved, but we
have summarized everything you need to know to complete this assignment. Please read the entire handout
before starting to code the assignment.

The Decathlon

Here’s a crash course in scoring: Each decathlete competes in a total of 10 specific events over the course
of 2 days. The 4 running events (100 meters, 400 meters, 110 meters hurdles, and 1500 meters) are track
events and measured in seconds (faster times are better). The other 6 events (long jump, shot put, high
jump, discus throw, pole vault, and javelin throw) are field events and measured in meters (longer distances
are better).

To determine the winner of the entire competition, the scores for each event are converted to points using
the formulas and constants below and added together. The formulas have been repeatedly adjusted over
the years to normalize the units for the different events and appropriately reward typical and outstanding
performances in each event. For more information see http://en.wikipedia.org/wiki/Decathlon.

For track events:
points = int(A ∗ (B − score)C)

For field events:
points = int(A ∗ (score −B)C)

Event A B C Units

100m 25.4347 18 1.81 seconds
Long Jump 0.14354 220 1.4 centimeters
Shot Put 51.39 1.5 1.05 meters
High Jump 0.8465 75 1.42 centimeters
400 m 1.53775 82 1.81 seconds
110 m Hurdles 5.74352 28.5 1.92 seconds
Discus Throw 12.91 4 1.1 meters
Pole Vault 0.2797 100 1.35 centimeters
Javelin Throw 10.14 7 1.08 meters
1500 m 0.03768 480 1.85 seconds

You will parse an input file with the scores for each event (not in any particular order). Here is a partial
input file:

event POLE_VAULT

Andrei Krauchanka BLR 5.00

Bryan Clay USA 5.00

Leonel Suarez CUB 4.70

event 100_METERS

Bryan Clay USA 10.44

Leonel Suarez CUB 10.90

Andrei Krauchanka BLR 10.96

event 1500_METERS

Andrei Krauchanka BLR 4:27.47

Leonel Suarez CUB 4:29.17

Bryan Clay USA 5:06.59

http://en.wikipedia.org/wiki/Decathlon


The scores for each event are delimited by the keyword event followed by the name of the event. There are
no spaces in the event name. Then each player is listed with first name, last name, country, and score for
the event. All of the scores are given as a floating point number in the units (seconds or meters) appropriate
for the event. The exception is the 1500 meter run, which is given in the format m:ss.ss. Some decathletes
are not listed for each event because they did not complete the event or because their performance was
disqualified and thus they will receive no points for that event.

File I/O and Command Line Arguments

Your program will run with three command-line arguments: the first being the name of the input file
containing the raw event scores, the second being the name of the output file where you will write the
computed statistics, and the third requesting one of three tables of statistics: scores, points, or custom.
Example input and output files are posted on the course website. For example, here are sample valid
command lines to your program:

./decathlon_statistics.out 2008_medalists.txt out_2008_medalists_scores.txt scores

./decathlon_statistics.out 2008_medalists.txt out_2008_medalists_points.txt points

./decathlon_statistics.out 2008_medalists.txt out_2008_medalists_custom.txt custom

We have provided you with decathlon score datasets from the 2004, 2008, and 2012 Olympics. The original
data was taken from the International Association of Athletics Federation’s website, http://www.iaaf.org/.
The format has been modified to ease parsing.

Statistics Collected and Output

When the command line specifies scores, your program should output a table with the decathletes sorted
alphabetically by country abbreviation, then by last name. Each row of the table should include the
decathlete’s first and last names, country name, and the scores for the 10 events. For example, given
an input file with scores for the 3 medalists from the 2008 Olympics, your program will produce a table
similar to this:

DECATHLETE SCORES 100 LJ SP HJ 400 110H DT PV JT 1500

Andrei Krauchanka BLR 10.96 7.61 14.39 2.11 47.30 14.21 44.58 5.00 60.23 4:27.47

Leonel Suarez CUB 10.90 7.33 14.49 2.05 47.91 14.15 44.45 4.70 73.98 4:29.17

Bryan Clay USA 10.44 7.78 16.27 1.99 48.92 13.93 53.79 5.00 70.97 5:06.59

The formatting shown above is an example; your output spacing may be slightly different as long as it is
well-formatted and easy to read. If the athlete did not score a particular event, that cell in the table should
be blank.

When the command line specifies points, the output is a table where the players are sorted by their total
summed points for the competition. Again each row includes the decathlete’s first and last names and country
name. The points earned for each event are listed, followed by the total. The formatting shown below is an
example of how to present this information:

DECATHLETE POINTS 100 LJ SP HJ 400 110H DT PV JT 1500 TOTAL

Bryan Clay USA 989 1005 868 794 865 984 950 910 904 522 8791

Andrei Krauchanka BLR 870 962 752 906 943 948 758 910 741 761 8551

Leonel Suarez CUB 883 893 758 850 913 955 756 819 950 750 8527

The custom command line option is a chance for you to be creative. Brainstorm an interesting statistic that
can be calculated from this data. Examples include determining and outputting how many of the 10 events
each decathlete “won”, placed “second”, placed “third”, etc. Another example would be to compute the

2

http://www.iaaf.org/


average and standard deviation of points earned for each event which could indicate which events have more
of an impact on the competition winner.

Extra credit will be awarded to particularly interesting statistics that require clever programming. The most
important task for this part of the assignment is to write a concise description (< 100 words) of your new
statistic. Put this description in your plaintext README.txt file along with any other notes for the grader.
Be sure to tell the grader which dataset best demonstrates your new statistic. Feel free to create your own
dataset and include it and the corresponding output with your submission.

Useful Code

To control the formatting of your tables, you’ll want to read up on the various I/O manipulators:
std::setw(int), std::setprecision(int), std::fixed, std::left, etc. To use those formatting controls
you’ll need to #include <iomanip>. And don’t forget about the sort function that can be used to order
the contents of a vector.

Program Requirements & Submission Details

Your program should involve the definition of at least one class that has its own .h and .cpp files, named
appropriately. Initially you should focus on the small dataset with the 2008 Olympic medalists. Once that
is working you can extend your solution to handle the bigger test cases which include data for decathletes
who did not complete all of the events.

Do all of your work in a folder named hw2 inside of your Data Structures homeworks directory. Use good
coding style when you design and implement your program. Be sure to make up new test cases and don’t
forget to comment your code! Please use the provided template README.txt file for any notes you want the
grader to read.

You must do this assignment on your own, as described in the “Collaboration Policy & Academic Integrity”
handout. If you discuss the problem or error messages, etc. with anyone, please list their names in your
README.txt file.

If by Wednesday 11:59:59PM any version of your HW2 that you’ve submitted has earned 5 points between
Test Cases 3, 4, 6, and 7, you will earn you a 1 day extension for HW2.

3

http://www.cs.rpi.edu/academics/courses/spring20/csci1200/academic_integrity.php

