
CSCI-1200 Data Structures — Spring 2020

Lecture 9 — Iterators & STL Lists

Review from Lecture 8

• Algorithm Analysis, Formal Definition of Order Notation

• Another vector operation: pop back

• Erasing items from vectors is inefficient!

• Iterators and iterator operations

Today

• STL lists are a different sequential container class.

• Returning references to member variables from member functions

• Vec iterator implementation

• Quick review of iterators

• Implementation of iterators in our homemade Vec class (from Lecture 7)

• const and reference on return values

Optional Reading: Ford & Topp Ch 6; Koenig & Moo, Sections 5.1-5.5

9.1 A New Datatype: The list Standard Library Container Class

• Lists are our second standard-library container class. (Vectors were the first.) Both lists & vectors store
sequential data that can shrink or grow.

• However, the use of memory is fundamentally different. Vectors are formed as a single contiguous array-like
block of memory. Lists are formed as a sequentially linked structure instead.

array/vector:

7 5 8 1 9 7 95 8 1
0 1 2 3 4

list:

• Although the interface (functions called) of lists and vectors and their iterators are quite similar, their implemen-
tations are VERY different. Clues to these differences can be seen in the operations that are NOT in common,
such as:

– STL vectors / arrays allow “random-access” / indexing / [] subscripting. We can immediately jump to
an arbitrary location within the vector / array.

– STL lists have no subscripting operation (we can’t use [] to access data). The only way to get to the
middle of a list is to follow pointers one link at a time.

– Lists have push front and pop front functions in addition to the push back and pop back functions of
vectors.

– erase and insert in the middle of the STL list is very efficient, independent of the size of the list. Both
are implemented by rearranging pointers between the small blocks of memory. (We’ll see this when we
discuss the implementation details next week).

– We can’t use the same STL sort function we used for vector; we must use a special sort function defined
by the STL list type.

std::vector<int> my_vec;

std::list<int> my_lst;

// ... put some data in my_vec & my_lst

std::sort(my_vec.begin(),my_vec.end(),optional_compare_function);

my_lst.sort(optional_compare_function);



Note: STL list sort member function is just as efficient, O(n log n), and will also take the same optional
compare function as STL vector.

– Several operations invalidate the values of vector iterators, but not list iterators:

∗ erase invalidates all iterators after the point of erasure in vectors;

∗ push back and resize invalidate ALL iterators in a vector

The value of any associated vector iterator must be re-assigned / re-initialized after these operations.

9.2 Exercise: Revising the Class List Program to Use Lists (& Iterators)

Now let’s further modify the program to use lists instead of vectors. Because we’ve already switched to iterators,
this change will be relatively easy. And now the program will be more efficient!

9.3 Erase & Iterators

• STL lists and vectors each have a special member function called erase. In particular, given list of ints s,
consider the example:

std::list<int>::iterator p = s.begin();

++p;

std::list<int>::iterator q = s.erase(p);

• After the code above is executed:

– The integer stored in the second entry of the list has been removed.

– The size of the list has shrunk by one.

– The iterator p does not refer to a valid entry.

– The iterator q refers to the item that was the third entry and is now the second.

?

7 95 8 1

7 98 1

p q

p

• To reuse the iterator p and make it a valid entry, you will often see the code written:

std::list<int>::iterator p = s.begin();

++p;

p = s.erase(p);

• Even though the erase function has the same syntax for vectors and for list, the vector version is O(n), whereas
the list version is O(1).

9.4 Insert

• Similarly, there is an insert function for STL lists that takes an iterator and a value and adds a link in the
chain with the new value immediately before the item pointed to by the iterator.

• The call returns an iterator that points to the newly added element. Variants on the basic insert function are
also defined.

9.5 Exercise: Using STL list Erase & Insert

Write a function that takes an STL list of integers, lst, and an integer, x. The function should 1) remove all
negative numbers from the list, 2) verify that the remaining elements in the list are sorted in increasing order, and
3) insert x into the list such that the order is maintained.

2



9.6 Implementing Vec<T> Iterators

• Let’s add iterators to our Vec<T> class declaration from last lecture:

public:

// TYPEDEFS

typedef T* iterator;

typedef const T* const_iterator;

// MODIFIERS

iterator erase(iterator p);

// ITERATOR OPERATIONS

iterator begin() { return m_data; }

const_iterator begin() const { return m_data; }

iterator end() { return m_data + m_size; }

const_iterator end() const { return m_data + m_size; }

• First, remember that typedef statements create custom, alternate names for existing types.

Vec<int>::iterator is an iterator type defined by the Vec<int> class. It is just a T * (an int *). Thus,
internal to the declarations and member functions, T* and iterator may be used interchangeably.

• Because the underlying implementation of Vec uses an array, and because pointers are the “iterator”s of arrays,
the implementation of vector iterators is quite simple. Note: the implementation of iterators for other STL
containers is more involved!

• Thus, begin() returns a pointer to the first slot in the m data array. And end() returns a pointer to the “slot”
just beyond the last legal element in the m data array (as prescribed in the STL standard).

• Furthermore, dereferencing a Vec<T>::iterator (dereferencing a pointer to type T) correctly returns one of
the objects in the m data, an object with type T.

• And similarly, the ++, --, <, ==, !=, >=, etc. operators on pointers automatically apply to Vec iterators.

• The erase function requires a bit more attention. We’ve implemented the core of this function above. The
STL standard further specifies that the return value of erase is an iterator pointing to the new location of the
element just after the one that was deleted.

• Finally, note that after a push back or erase or resize call some or all iterators referring to elements in that
vector may be invalidated. Why? You must take care when designing your program logic to avoid invalid
iterator bugs!

9.7 Review: Iterators and Iterator Operations

• An iterator type is defined by each STL container class. For example:

std::vector<double>::iterator v_itr;

std::list<std::string>::iterator l_itr;

std::string::iterator s_itr;

• An iterator is assigned to a specific location in a container. For example:

v_itr = vec.begin() + i; // i-th location in a vector

l_itr = lst.begin(); // first entry in a list

s_itr = str.begin(); // first char of a string

Note: We can add an integer to vector and string iterators, but not to list iterators.

• The contents of the specific entry referred to by an iterator are accessed using the * dereference operator:
In the first and third lines, *v itr and *l itr are l-values. In the second, *s_itr is an r-value.

*v_itr = 3.14;

cout << *s_itr << endl;

*l_itr = "Hello";

3



• Stepping through a container, either forward and backward, is done using increment (++) and decrement (--)
operators:

++itr; itr++; --itr; itr--;

These operations move the iterator to the next and previous locations in the vector, list, or string. The
operations do not change the contents of container!

• Finally, we can change the container that a specific iterator is attached to as long as the types match.
Thus, if v and w are both std::vector<double>, then the code:

v_itr = v.begin();

*v_itr = 3.14; // changes 1st entry in v

v_itr = w.begin() + 2;

*v_itr = 2.78; // changes 3rd entry in w

works fine because v_itr is a std::vector<double>::iterator, but if a is a
std::vector<std::string> then

v_itr = a.begin();

is a syntax error because of a type clash!

9.8 Additional Iterator Operations for Vector (& String) Iterators

• Initialization at a random spot in the vector:

v_itr = v.begin() + i;

Jumping around inside the vector through addition and subtraction of location counts:

v_itr = v_itr + 5;

moves p 5 locations further in the vector. These operations are constant time, O(1) for vectors.

• These operations are not allowed for list iterators (and most other iterators, for that matter) because of the
way the corresponding containers are built. These operations would be linear time, O(n), for lists, where n is
the number of slots jumped forward/backward. Thus, they are not provided by STL for lists.

• Students are often confused by the difference between iterators and indices for vectors. Consider the following
declarations:

std::vector<double> a(10, 2.5);

std::vector<double>::iterator p = a.begin() + 5;

unsigned int i=5;

• Iterator p refers to location 5 in vector a. The value stored there is directly accessed through the * operator:

*p = 6.0;

cout << *p << endl;

• The above code has changed the contents of vector a. Here’s the equivalent code using subscripting:

a[i] = 6.0;

cout << a[i] << endl;

• Here’s another common confusion:

std::list<int> lst; lst.push_back(100); lst.push_back(200);

lst.push_back(300); lst.push_back(400); lst.push_back(500);

std::list<int>::iterator itr,itr2,itr3;

itr = lst.begin();// itr is pointing at the 100

++itr; // itr is now pointing at 200

*itr += 1; // 200 becomes 201

// itr += 1; // does not compile! can't advance list iterator like this

itr = lst.end(); // itr is pointing "one past the last legal value" of lst

itr--; // itr is now pointing at 500;

itr2 = itr--; // itr is now pointing at 400, itr2 is still pointing at 500

itr3 = --itr; // itr is now pointing at 300, itr3 is also pointing at 300

4



// dangerous: decrementing the begin iterator is "undefined behavior"

// (similarly, incrementing the end iterator is also undefined)

// it may seem to work, but break later on this machine or on another machine!

itr = lst.begin();

itr--; // dangerous!

itr++;

assert (*itr == 100); // might seem ok... but rewrite the code to avoid this!

9.9 References and Return Values

• A reference is an alias for another variable. For example:

string a = "Tommy";

string b = a; // a new string is created using the string copy constructor

string& c = a; // c is an alias/reference to the string object a

b[1] = 'i';

cout << a << " " << b << " " << c << endl; // outputs: Tommy Timmy Tommy

c[1] = 'a';

cout << a << " " << b << " " << c << endl; // outputs: Tammy Timmy Tammy

The reference variable c refers to the same string as variable a. Therefore, when we change c, we change a.

• Exactly the same thing occurs with reference parameters to functions and the return values of functions. Let’s
look at the Student class from Lecture 4 again:

class Student {

public:

const string& first_name() const { return first_name_; }

const string& last_name() const { return last_name_; }

private:

string first_name_;

string last_name_;

};

• In the main function we had a vector of students:

vector<Student> students;

Based on our discussion of references above and looking at the class declaration, what if we wrote the following.
Would the code then be changing the internal contents of the i-th Student object?

string & fname = students[i].first_name();

fname[1] = 'i'

• The answer is NO! The Student class member function first_name returns a const reference. The compiler
will complain that the above code is attempting to assign a const reference to a non-const reference variable.

• If we instead wrote the following, then compiler would complain that you are trying to change a const object.

const string & fname = students[i].first_name();

fname[1] = 'i'

• Hence in both cases the Student class would be “safe” from attempts at external modification.

• However, the author of the Student class would get into trouble if the member function return type was only
a reference, and not a const reference. Then external users could access and change the internal contents of an
object! This is a bad idea in most cases.

9.10 Working towards our own version of the STL list

• Our discussion of how the STL list<T> is implemented has been intuitive: it is a “chain” of objects.

• Now we will study the underlying mechanism — linked lists.

• This will allow us to build custom classes that mimic the STL list class, and add extensions and new features
(more in the next couple lectures!).

5



9.11 Objects with Pointers, Linking Objects Together

• The two fundamental mechanisms of linked lists are:

– creating objects with pointers as one of the member variables, and

– making these pointers point to other objects of the same type.

• These mechanisms are illustrated in the following program:

template <class T>

class Node {

public:

T value;

Node* ptr;

};

int main() {

Node<int>* ll; // ll is a pointer to a (non-existent) Node

ll = new Node<int>; // Create a Node and assign its memory address to ll

ll->value = 6; // This is the same as (*ll).value = 6;

ll->ptr = NULL; // NULL == 0, which indicates a "null" pointer

Node<int>* q = new Node<int>;

q->value = 8;

q->ptr = NULL;

// set ll's ptr member variable to

// point to the same thing as variable q

ll->ptr = q;

cout << "1st value: " << ll->value << "\n"

<< "2nd value: " << ll->ptr->value << endl;

}

6

ll

value

ptr

value

ptr

q

NULL

8
9.12 Definition: A Linked List

• The definition is recursive: A linked list is either:

– Empty, or

– Contains a node storing a value and a pointer to a linked list.

• The first node in the linked list is called the head node and the pointer to this node is called the head pointer.
The pointer’s value will be stored in a variable called head.

9.13 Visualizing Linked Lists

NULL

value

ptr

value

ptr

value

ptr

value

ptr

head

• The head pointer variable is drawn with its own box. It is an individual variable. It is important to have a
separate pointer to the first node, since the “first” node may change.

• The objects (nodes) that have been dynamically allocated and stored in the linked lists are shown as boxes,
with arrows drawn to represent pointers.

– Note that this is a conceptual view only. The memory locations could be anywhere, and the actual values
of the memory addresses aren’t usually meaningful.

• The last node MUST have NULL for its pointer value — you will have all sorts of trouble if you don’t ensure
this!

• You should make a habit of drawing pictures of linked lists to figure out how to do the operations.

6


	A New Datatype: The list Standard Library Container Class
	Exercise: Revising the Class List Program to Use Lists (& Iterators)
	Erase & Iterators
	Insert
	Exercise: Using STL list Erase & Insert
	Implementing Vec<T> Iterators
	Review: Iterators and Iterator Operations
	Additional Iterator Operations for Vector (& String) Iterators
	References and Return Values
	Working towards our own version of the STL list
	Objects with Pointers, Linking Objects Together
	Definition: A Linked List
	Visualizing Linked Lists

