Sentential logic

Goal: to become familiar with \textit{propositional logic} proofs.

- Boolean constants
- conjunctions
- conditionals
- disjunctions
- negations
- biconditionals
- \textit{recursive proof methods}
- \textit{proof heuristics}
Sentential logic

Sentential logic is concerned with zero-order sentences:

- either a Boolean term, say, \((\text{zero} < S \text{ zero})\),
- or the result of applying one of the five sentential connectives (not, and, or, if, iff) to other zero-order sentences.
Working with the Boolean constants

We can derive true any time by applying the nullary method true-intro:

```latex
> (!true-intro)

Theorem: true
```

The constant false can only be derived if the assumption base is inconsistent. Applying the binary method absurd to \(p \) and \((\sim p) \) will derive false:

```latex
> assume A
  
  assume (~ A)

  (!absurd A (~ A))

Theorem: (if A
  
  (if (not A)

  false))
```
Working with the Boolean constants

Finally, we can derive (~ false) at any time through the nullary method false-elim:

> (!false-elim)

Theorem: (not false)
Using conjunctions

The unary method `left-and` takes a conjunction \((p \ & \ q)\) that is present in the assumption base, and produces the conclusion \(p\):

```
assert p := (A & B)
> (!left-and p)
```

Theorem: A

There is a similar unary method, `right-and`, that does the same thing for the right component of a conjunction: If \((p \ & \ q)\) is in the assumption base,

\[(!\text{right-and} \ (p \ & \ q)) \]

will produce the conclusion \(q\).
Deriving conjunctions

Given any two sentences p and q in the assumption base, the binary method call

$$(!\text{both } p \ q)$$

will produce the conclusion $(p \ & \ q)$.

As an example that uses all three methods dealing with conjunctions, consider the derivation of $(D \ & \ A)$ from the premises $(A \ & \ B)$ and $(C \ & \ D)$:

```
assert A-and-B := (A & B)
assert C-and-D := (C & D)

> (!both (!right-and C-and-D)
  (!left-and A-and-B))

Theorem: (and D A)
```
Using conditionals: modus ponens

Starting from two premises of the form \((p \Rightarrow q)\) and \(p\), modus ponens yields the conclusion \(q\), thereby detaching (“eliminating”) the conditional connective.

- In Athena, modus ponens is performed by the primitive binary method `mp`.
- When the first argument to `mp` is of the form \((p \Rightarrow q)\), the second argument is \(p\), and both arguments are in the assumption base, `mp` will derive \(q\).
- For instance, assuming that \((A \Rightarrow B)\) and \(A\) are both in the assumption base, we have:

```plaintext
> (!mp (A ==> B) A)

Theorem: B
```
Using conditionals: modus tollens

Given two premises of the form \((p \implies q)\) and \((\neg q)\), modus tollens generates the conclusion \((\neg p)\).

- In Athena, modus tollens is performed by the binary method \(mt\).
- When the first argument to \(mt\) is a conditional \((p \implies q)\), the second is \((\neg q)\), and both are in the assumption base, \(mt\) will derive \((\neg p)\).
- For instance, assuming that \((A \implies B)\) and \((\neg B)\) are both in the assumption base, we have:

\[
> (!mt (A \implies B) (\neg B))
\]

Theorem: \((\neg A)\)
Deriving conditionals with `assume`

The standard way of proving a conditional \((p \implies q)\) is to assume the antecedent \(p\) (i.e., to add \(p\) to the current assumption base) and proceed to derive the consequent \(q\).

- In Athena, conditional deductions are written: `assume p D`, where \(D\) is a proof that derives \(q\) from the augmented assumption base.
- A proof of \((A \implies A)\):
  ```
  > assume A
  (!claim A)
  
  **Theorem**: (if A A)
  ```

- We refer to \(p\) and \(D\) as the *hypothesis* (or *assumption*) and the *body* of the conditional deduction, respectively.
Deriving conditionals with assume

To evaluate a deduction of the form

\[\text{assume } p \quad D \]

in an assumption base \(\beta \):

- We add \(p \) to \(\beta \) and go on to evaluate the body \(D \) in the augmented assumption base \(\beta \cup \{p\} \).
- The fact that \(D \) is evaluated in \(\beta \cup \{p\} \) means that the assumption \(p \) can be freely used anywhere within its scope, that is, anywhere inside \(D \).
- If and when the evaluation of \(D \) in \(\beta \cup \{p\} \) produces a conclusion \(q \), we return the conditional \((p \implies q) \) as the result of \((1)\).
Deriving conditionals with assume

The body D is said to be a *subproof* (or *subdeduction*) of the conditional proof (1). Subproofs can be nested inside one another

```
assume $p$

::
::
::

assume $q$

::

::

::

This subproof is in the scope of both $q$ and $p$

Here we are in the scope of $p$ but outside the scope of $q$
Deriving conditionals with \texttt{assume}

For instance, in the following proof the body (\texttt{!claim A}) is in the scope of both the inner assumption B and the outer assumption A:

\begin{verbatim}
> assume A
  assume B
    (!claim A)

Theorem: (if A
    (if B A))
\end{verbatim}

Evaluating this proof in any assumption base $\beta$ whatsoever will successfully produce the result

\[(A \implies B \implies A).\]

That is the case for all and only those sentences that are \textit{tautologies}. A \textit{tautology} is precisely a sentence that can be derived from every assumption base. Or alternatively, from the empty assumption base.
Deriving conditionals with assume

Consider next this implication:

\[((A \implies B \implies C) \implies (B \implies A \implies C))\].

The following proof derives it:

> assume hyp := (A \implies B \implies C)
>    assume B
>      assume A
>        let {B=>C := (!mp hyp A)}
>          conclude C
>            (!mp B=>C B)

**Theorem**: (if (if A

  (if B C))

  (if B

  (if A C)))
Using disjunctions: Reasoning by cases

Suppose we are trying to derive some goal $p$.

- If the assumption base contains a disjunction $(p_1 \lor p_2)$, we can often put that disjunction to use as follows:
  - We know that $p_1$ holds or $p_2$ holds.
  - If we can show that $p_1$ implies the goal $p$ and that $p_2$ also implies $p$, then we can conclude $p$.
  - For, if $p_1$ holds, then $p$ follows from the implication $(p_1 \implies p)$, $p_1$, and modus ponens; while, if $p_2$ holds, then $p$ follows from $(p_2 \implies p)$, $p_2$, and modus ponens.
  - This type of reasoning (called “case analysis,” or “reasoning by cases”) is pervasive, both in mathematics and in real life.
Using disjunctions: Reasoning by cases

In Athena, reasoning by cases is carried out by the ternary method cases.

- The first argument of this method must be a disjunction, say \((p_1 \lor p_2)\); while the second and third arguments must be conditionals of the form \((p_1 \Rightarrow p)\) and \((p_2 \Rightarrow p)\)

- If all three sentences are in the assumption base, then the conclusion \(p\) is produced as the result, e.g.:

```plaintext
assert (C1 | C2), (C1 ==> B), (C2 ==> B)
> conclude B
(!cases (C1 | C2)
 (C1 ==> B)
 (C2 ==> B))
```

**Theorem:** B
Using disjunctions: Reasoning by cases

- We know that for any given \( p \), either \( p \) or \( \sim p \) holds; this is the law of the excluded middle.
- Therefore, if we can show that a goal \( q \) follows both from \( p \) and from \( \sim p \), we should be able to conclude \( q \).
- This is done with the binary method two-cases, which takes two premises of the form \((p \implies q)\) and \((\sim p \implies q)\) and derives \( q \).
- For example:

```
assert (A ==> B), (~ A ==> B)

> (!two-cases
 (A ==> B)
 (~ A ==> B))

Theorem: B
```
Deriving disjunctions

To derive a disjunction \((p \mid q)\) we can derive the left component, \(p\), or the right component \(q\).

- If we have \(p\) in the assumption base, then \((p \mid q)\) can be derived by applying the binary method \texttt{left-either} to \(p\) and \(q\):

  \[(!\texttt{left-either} ~ p ~ q)\].

- Or if \(q\) is in the assumption base, then

  \[(!\texttt{right-either} ~ p ~ q)\]

\[
> (!\texttt{left-either} ~ (A \implies A) ~ B) \\
\textbf{Theorem}: ~ (\text{or} ~ (\text{if} ~ A ~ A) ~ \\
B) \\
\[
> (!\texttt{right-either} ~ B ~ (A \implies A)) \\
\textbf{Theorem}: ~ (\text{or} ~ B ~ \\
(\text{if} ~ A ~ A))
\]
Deriving disjunctions

- Athena offers a third, more versatile mechanism for disjunction introduction, the binary method either.
- If either \( p \) or \( q \) is in the assumption base, then \( (!\text{either } p \lor q) \) derives the disjunction \( (p \lor q) \).
- Otherwise, if neither argument is in the assumption base, either fails.

We can also use the logical equivalence between a disjunction \( (p \lor q) \) and the conditional

\[
(\sim p \implies q)
\]

to derive a disjunction using the prior techniques to derive conditional sentences.
Using negations

The only primitive method for negation elimination is $dn$, which stands for “double negation.”
It is a unary method whose argument must be of the form $(\sim \sim p)$.
If that sentence is in the assumption base, then the call

$$(!dn \ (\sim \sim p))$$

will produce the conclusion $p$.

There are two other primitive methods that require some of its arguments to be negations: $mt$ and $absurd$. 
Deriving negations: Proof by contradiction

Proof by contradiction is one of the most useful and common forms of deductive reasoning.
The basic idea is to establish a negation ($\sim p$) by

- assuming $p$
- showing that this assumption (perhaps in tandem with other working assumptions) leads to an absurdity, namely, to false.
- which entitles us to reject the hypothesis $p$ and conclude the desired ($\sim p$).
Deriving negations: Proof by contradiction

The binary method by-contradiction is one way to perform this type of reasoning in Athena.

- The first argument to by-contradiction is simply the sentence we are trying to establish, typically a negation ($\sim p$).
- The second argument must be the conditional ($p \Rightarrow \text{false}$), essentially stating that the hypothesis $p$ leads to an absurdity.
- If that conditional is in the assumption base, then the desired conclusion ($\sim p$) will be produced.
Deriving negations: Proof by contradiction

Suppose the assumption base contains the premises \((A \implies B \& C)\) and \((\neg B)\), and we want to derive \((\neg A)\).

We can reason by contradiction as follows:

- Suppose \(A\) holds.
- Then, by the first premise and modus ponens, we would have \((B \& C)\), and hence, by conjunction elimination, \(B\).
- But this contradicts the second premise, \((\neg B)\), which allows us to reject the hypothesis \(A\), inferring \((\neg A)\).
Deriving negations: Proof by contradiction

In Athena, this proof can be written as follows:

```
assert premise-1 := (A ==> B & C)
assert premise-2 := (~ B)

> (!by-contradiction (~ A)
 assume A
 let {p1 := conclude (B & C)
 (!mp premise-1 A);
 _ := conclude B
 (!left-and p1)}
 (!absurd B premise-2))

Theorem: (not A)
```
Deriving negations: Proof by contradiction

As another example, here is a proof that derives (\neg B) from (\neg (A \rightarrow B)):

\textbf{Theorem}: (\neg B)

\begin{verbatim}
assert premise := (\neg (A \rightarrow B))

> (!by-contradiction (\neg B)
  assume B
  let {A\rightarrow B := assume A
    (!claim B)}
  (!absurd A\rightarrow B premise))
\end{verbatim}
Deriving negations: Proof by contradiction

The most direct way to derive \texttt{false} is to apply the binary method \texttt{absurd} to two contradictory sentences of the form \( q \) and \( (\neg q) \) in the assumption base.

\begin{verbatim}
> (!absurd A (~ A))

Theorem: false
\end{verbatim}

Therefore, a proof of \((\neg p)\) by contradiction often has the following logical structure:

\begin{verbatim}
(!by-contradiction (~ p)

  assume p

  let \{p1 := conclude q

  D1;

  p2 := conclude (~ q)

  D2\}

  (!absurd p1 p2))
\end{verbatim}
Proof by contradiction

If the sentence $p$ we want to establish by contradiction is not a negation, recall every sentence $p$ is equivalent to the double negation ($\sim \sim p$). We can simply infer ($\sim \sim p$) by assuming ($\sim p$) and deriving a contradiction. After that, we can eliminate the double negation sign with $\text{dn}$.

For example, suppose from $A$ and ($\sim (A \& \sim B)$), we want to derive $B$:

```
assert premise-1 := ($\sim (A \& \sim B)$)
assert premise-2 := A

> let {--B := (!by-contradiction ($\sim \sim B$)
 assume ($\sim B$)
 (!absurd (!both A ($\sim B$)) premise-1))}
(!dn --B)
```

**Theorem:** $B$
Proof by contradiction

by-contradiction offers a shortcut:

- When the conclusion \( p \) to be established is not in the explicit form of a negation, it suffices to establish the conditional \( (\sim p \implies \text{false}) \).

- We can then apply by-contradiction directly to \( p \) and this conditional:

\[
\begin{align*}
\text{(!by-contradiction } p \\
(\sim p \implies \text{false}))
\end{align*}
\]

and the desired \( p \) will be obtained.

> (!by-contradiction B
assume (~ B)
(!absurd (!both A (~ B)) premise-1))

Theorem: B
Proof by contradiction

There are two other auxiliary methods for reasoning by contradiction:

1. The unary method `from-false` derives any given sentence, provided that the assumption base contains `false`. That is, `(!from-false p)` will produce the theorem `p` whenever the assumption base contains `false`. This captures the principle that “everything follows from false.”

2. The ternary method `from-complements` derives any given sentence `p` provided that the assumption base contains two complementary sentences `q` and `\overline{q}`. Specifically, 

   `(!from-complements p q \overline{q})`

will derive `p` provided that both `q` and `\overline{q}` are in the assumption base. Such an application can be read as: “Infer `p` from the complements `q` and `\overline{q}`.”
Using biconditionals

There are two elimination methods for biconditionals, left-iff and right-iff.
For any given biconditional \((p \iff q)\) in the assumption base, the method call

\[
(!\text{left-iff } (p \iff q))
\]

will produce the conclusion \((p \implies q)\), while

\[
(!\text{right-iff } (p \iff q))
\]

will yield \((q \implies p)\), e.g.:

```
assert bc := (A <==> B)

> (!left-iff bc)
Theorem: (if A B)

> (!right-iff bc)
Theorem: (if B A)
```
Deriving biconditionals

The introduction method for biconditionals is equiv.
Given two conditionals \((p \implies q)\) and \((q \implies p)\) in the assumption base, the call

\[ \neg \text{equiv} (p \implies q) (q \implies p) \]

will derive the biconditional \((p \iff q)\):

assert \((A \implies B), (B \implies A)\)

\[ \neg \text{equiv} (A \implies B) (B \implies A) \]

**Theorem**: \((\text{iff} \ A \ B)\)
Putting it all together

Suppose we are given the following two premises:

| assert premise-1 := (A & B | (A ==> C)) |
| assert premise-2 := (C <==> ~ E) |

and our task is to write a proof $D$ that derives the conditional

$$\neg B \implies A \implies \neg E$$

from the two premises.
assert premise-1 := (A & B | (A ==> C))
assert premise-2 := (C <=> (¬ E))

assume -B := (¬ B)
assume A
conclude -E := (¬ E)

(!cases premise-1
  assume (A & B)
  (!from-complements -E B -B)
  assume A=>C := (A ==> C)
  let {C=>-E := (!left-iff premise-2);}
  C := (!mp A=>C A)}
(!mp C=>-E C))