
CSCI-1200 Data Structures — Spring 2021

Lecture 6 — Pointers & Dynamic Memory

Announcements: Test 1 Information

• Test 1 will be held Thursday, February 18th, 2021 from 6:55-8:45pm America/NewYork.

– We hope all students will be available to sit for the exam at the same time, regardless of timezone.

– If that time window is impossible or a significant inconvenience for you, please email
ds_instructors@cs.rpi.edu before Monday, February 15th at 5pm America/NewYork to explain your
situation. Include your complete schedule for the week, detailing all 24 hours of each day.

– If you have a letter from Disability Services for Students and you have not already emailed it to
ds_instructors@cs.rpi.edu, please do so IMMEDIATELY. Shianne Hulbert will follow up with you to
make arrangements for your test accomodations.

– No make-ups will be given except for pre-approved absence or emergency or illness, and a written excuse
from the Dean of Students or the Student Experience office or the RPI Health Center will be required.

• Coverage: Lectures 1-6, Labs 1-4, and Homeworks 1-2.

– Practice problems from previous tests are available on the course website. Sample solutions to the practice
problems will be posted on Monday morning. The best way to prepare is to completely work through and
write out your solution to each problem, before looking at the answers.

• Test Format:

– The exam will be conducted on Submitty.

– Many of the problems will ask you to write C++ code (e.g., a code fragment, one or more complete
functions, or a short class). You will type these answers into a webform box on Submitty that includes
C++ syntax highlighting – similar to the Crash Course in C++ Lessons:
https://submitty.cs.rpi.edu/courses/s21/csci1199

– Some of the problems will be multiple choice or short answer (e.g., asking for you to write a few sentences).

– You are encouraged to periodically “Submit” your answers during the test period to save your work to
our server (e.g., after you finish each section of the test and/or every 15 minutes).

– There will be no feedback about the correctness of your answers displayed during the test period.
In fact, most of the exam will be graded by hand by the instructor and graduate TAs.

– Submitty will record the time you start the exam as the first time you load the exam page. It is your
responsiblity to make your final submission no more than 1 hour and 50 minutes after your start time.
Have a clock or watch handy. You may set a countdown timer or alarm for yourself.

– To avoid overloading the webserver with everyone loading and submitting the exam page at the same
minute, the exam will be available on Submitty 15 minutes early. (If you load the page a few minutes
early, your exam will also be due a few minutes early.)

– Make sure you have your laptop fully charged, or even better, that you’re plugged into the A/C power!

– Make all reasonable efforts to secure reliable internet for the exam period.

– If you have network problems or have problems connecting to Submitty or have another
personal emergency during the exam period, please make all reasonable efforts to complete the
exam (giving yourself 1 hour 50 minutes with the exam problems) and submit the exam promptly. The
Submitty website will be configured to accept submissions after the official exam period ends. Email
ds_instructors@cs.rpi.edu after your exam is submitted to explain your situation.

• Test Period Rules:

– You are not allowed to use a compiler or IDE during the exam. You will not be asked to
write complete programs. Nor will you be expected to write perfect C++ syntax. Rest assured – we will
not attempt to compile or run your solution (it is rare even for expert programmers to write code that
successfully compiles on the first try!) You will be graded primarily on your problem solving approach to
the questions, and on your overall proper use of the C++ programming language to communicate those
ideas.

https://submitty.cs.rpi.edu/courses/s21/csci1199


– You are not allowed to search the internet during the exam. No use of Google or other search
engines, no stackoverflow.com or cplusplus.com, etc. No use of online textbooks or other online references.

– Absolutely no communication during the exam. Find yourself a quiet space where you won’t be
interrupted by your family members, roommates, or friends. Once you open the exam to begin – no email,
no text, no phone, no video calls, no discord, no slack, no social media or communication of any kind!

– We will not be answering any questions during the exam period. We will not be making
announcements about clarifications or corrections of the exam problems. We will do our very
best to proofread the exam before we start. If you think you see a mistake or something is unclear, you
should do your best to answer the question as presented. You may write a short note to the grader as
part of your answer explaining your assumptions or confusion if appropriate.

– You are allowed (and encouraged) to have the equivalent of two 8.5”x11” pages of personal notes
in front of you during the exam. Students who take the time to organize and prepare notes while
studying are more successful in tackling new problems. The process of making yourself notes is often more
useful than the notes themselves, but you are welcome to share notes as you prepare for the test.

– The exam is otherwise “Closed Book”. You will spend most of your time thinking and answering
the test problems – which will be brand new and not taken out of any textbook or back test. You won’t
have time to read other references or watch videos.

• Post-Test Interview:

– 25-30% of the class will be contacted for a short 10-15 minute followup interview on WebEx
with a member of the Data Structures teaching staff to discuss their exam.

– Audio and video and screensharing will be required during the exam followup interview.
Contact ds_instructors@cs.rpi.edu if you have not been able to successfully participate with audio
and video and screensharing for your Lab Study Groups and Office Hours explaining your situation. We
understand that internet connectivity is challenging for some remote students and after we have established
the WebEx connection and verified your identity through video, we may allow you to turn off the video
to improve the call quality.

– The interview format will be approximately:

∗ ∼1 minute – Simple warmup conversation (a microphone audio check).

∗ ∼3-5 minutes – Student explains the answer they wrote for a specific problem on the exam. We’ll be
looking at your answer together through screensharing.

∗ ∼5-10 minutes – Student answers questions from the teaching staff about details of their solution or
possible variations/extensions of the problem.

– The interview audio and video will be recorded to allow review by the instructor if necessary. All copies
of the video will be destroyed within 7 days.

– The interview will not be “graded”. The interview is to verify identity and compliance with the course
and exam policies.

– All students must commit to a 2 hour window of availability for the post-test interview
either Thursday evening (9pm-midnight America/NewYork) or Friday (9am-midnight America/NewYork).
There is a Submitty form to collect this information that will be released Friday Feb 12th at 3pm.

– During their chosen time window, students should be “on call”, checking their email regularly.

– If you are selected for the interview for Test 1, you will be contacted by email at least 15 minutes
before your interview begins with an exact interview start time and the WebEx URL.

– We will have an exam followup interview with every student at least once during the term. Some students
may be randomly selected for two followup interviews.

Review from Lecture 5

• Pointer variables, arrays, pointer arithmetic and dereferencing, character arrays, and calling conventions.

Today’s Lecture — Pointers and Dynamic Memory

• Arrays and pointers

• Different types of memory

• Dynamic allocation of arrays

• Memory Debuggers
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6.1 Three Types of Memory

• Automatic memory: memory allocation inside a function when you create a variable. This allocates space for
local variables in functions (on the stack) and deallocates it when variables go out of scope. For example:

int x;

double y;

• Static memory: variables allocated statically (with the keyword static). They are are not eliminated when
they go out of scope. They retain their values, but are only accessible within the scope where they are defined.
NOTE: Static variables are not very common.

static int counter;

• Dynamic memory: explicitly allocated (on the heap) as needed. This is our focus for today.
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6.2 Dynamic Memory

• Dynamic memory is:

– created using the new operator,

– accessed through pointers, and

– removed through the delete operator.

• Here’s a simple example involving dynamic allocation of integers:

int * p = new int;

*p = 17;

cout << *p << endl;

int * q;

q = new int;

*q = *p;

*p = 27;

cout << *p << " " << *q << endl;

int * temp = q;

q = p;

p = temp;

cout << *p << " " << *q << endl;

delete p;

delete q;
sequentially!)

as variables
are assigned
sequentially

variables go
and shrinks as

out of scope

stack

p

q

temp

17

heap

memory allocated
as needed, where
space is available

(not necessarily

stack grows

• The expression new int asks the system for a new chunk of memory that is large enough to hold an integer
and returns the address of that memory. Therefore, the statement int * p = new int; allocates memory
from the heap and stores its address in the pointer variable p.

• The statement delete p; takes the integer memory pointed by p and returns it to the system for re-use.

• This memory is allocated from and returned to a special area of memory called the heap. By contrast, local
variables and function parameters are placed on the stack as discussed last lecture.

• In between the new and delete statements, the memory is treated just like memory for an ordinary variable,
except the only way to access it is through pointers. Hence, the manipulation of pointer variables and values is
similar to the examples covered in Lecture 5 except that there is no explicitly named variable for that memory
other than the pointer variable.

• Dynamic allocation of primitives like ints and doubles is not very interesting or significant. What’s more
important is dynamic allocation of arrays and objects.

6.3 Exercise

• What’s the output of the following code? Be sure to draw a picture to help you figure it out.

double * p = new double;

*p = 35.1;

double * q = p;

cout << *p << " " << *q << endl;

p = new double;

*p = 27.1;

cout << *p << " " << *q << endl;

*q = 12.5;

cout << *p << " " << *q << endl;

delete p;

delete q;
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6.4 Dynamic Allocation of Arrays

• How do we allocate an array on the stack? What is the code? What memory diagram is produced by the code?

• Declaring the size of an array at compile time doesn’t offer much flexibility. Instead we can dynamically allocate
an array based on data. This gets us part-way toward the behavior of the standard library vector class. Here’s
an example:

int main() {

std::cout << "Enter the size of the array: ";

int n,i;

std::cin >> n;

double *a = new double[n];

for (i=0; i<n; ++i) { a[i] = sqrt(i); }

for (i=0; i<n; ++i) {

if ( double(int(a[i])) == a[i] )

std::cout << i << " is a perfect square " << std::endl;

}

delete [] a;

return 0;

}

i

stack heap

n

a

• The expression new double[n] asks the system to dynamically allocate enough consecutive memory to hold n
double’s (usually 8n bytes).

– What’s crucially important is that n is a variable. Therefore, its value and, as a result, the size of the
array are not known until the program is executed and the the memory must be allocated dynamically.

– The address of the start of the allocated memory is assigned to the pointer variable a.

• After this, a is treated as though it is an array. For example: a[i] = sqrt( i );

In fact, the expression a[i] is exactly equivalent to the pointer arithmetic and dereferencing expression *(a+i)

which we have seen several times before.

• After we are done using the array, the line: delete [] a; releases the memory allocated for the entire
array and calls the destructor (we’ll learn about these soon!) for each slot of the array. Deleting a dynamically
allocated array without the [] is an error (but it may not cause a crash or other noticeable problem, depending
on the type stored in the array and the specific compiler implementation).

– Since the program is ending, releasing the memory is not a major concern. However, to demonstrate
that you understand memory allocation & deallocation, you should always delete dynamically allocated
memory in this course, even if the program is terminating.

– In more substantial programs it is ABSOLUTELY CRUCIAL. If we forget to release memory repeatedly
the program can be said to have a memory leak. Long-running programs with memory leaks will eventually
run out of memory and crash.

6.5 Exercises

1. Write code to dynamically allocate an array of n integers, point to this array using the integer pointer variable
a, and then read n values into the array from the stream cin.

2. Now, suppose we wanted to write code to double the size of array a without losing the values. This requires
some work: First allocate an array of size 2*n, pointed to by integer pointer variable temp (which will become
a). Then copy the n values of a into the first n locations of array temp. Finally delete array a and assign temp

to a.

Why don’t you need to delete temp?

Note: The code for part 2 of the exercise is very similar to what happens inside the resize member function
of vectors!
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6.6 Dynamic Allocation of Two-Dimensional Arrays

• To store a grid of data, we will need to allocate a top level array of pointers to arrays of the data. For example:

double** a = new double*[rows];

for (int i = 0; i < rows; i++) {

a[i] = new double[cols];

for (int j = 0; j < cols; j++) {

a[i][j] = double(i+1) / double (j+1);

}

}

Draw a picture of the resulting data structure.
Then, write code to correctly delete all of this memory.

6.7 Dynamic Allocation: Arrays of Class Objects

• We can dynamically allocate arrays of class objects. The default constructor (the constructor that takes no
arguments) must be defined in order to allocate an array of objects.

class Foo {

public:

Foo();

double value() const { return a*b; }

private:

int a;

double b;

};

Foo::Foo() {

static int counter = 1;

a = counter;

b = 100.0;

counter++;

}

int main() {

int n;

std::cin >> n;

Foo *things = new Foo[n];

std::cout << "size of int: " << sizeof(int) << std::endl;

std::cout << "size of double: " << sizeof(double) << std::endl;

std::cout << "size of foo object: " << sizeof(Foo) << std::endl;

for (Foo* i = things; i < things+n; i++)

std::cout << "Foo stored at: " << i << " has value " << i->value() << std::endl;

delete [] things;

}

size of int: 4

size of double: 8

size of foo object: 16

Foo stored at: 0x104800890 has value 100

Foo stored at: 0x1048008a0 has value 200

Foo stored at: 0x1048008b0 has value 300

Foo stored at: 0x1048008c0 has value 400

...
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6.8 Memory Debugging

In addition to the step-by-step debuggers like gdb, lldb, or the debugger in your IDE, we recommend using a memory
debugger like “Dr. Memory” (Windows, Linux, and MacOSX) or “Valgrind” (Linux and MacOSX). These tools can
detect the following problems:

• Use of uninitialized memory

• Reading/writing memory after it has been free’d (NOTE: delete calls free)

• Reading/writing off the end of malloc’d blocks (NOTE: new calls malloc)

• Reading/writing inappropriate areas on the stack

• Memory leaks - where pointers to malloc’d blocks are lost forever

• Mismatched use of malloc/new/new [] vs free/delete/delete []

• Overlapping src and dst pointers in memcpy() and related functions

6.9 Sample Buggy Program

Can you see the errors in this program?

1 #include <iostream>

2

3 int main() {

4

5 int *p = new int;

6 if (*p != 10) std::cout << "hi" << std::endl;

7

8 int *a = new int[3];

9 a[3] = 12;

10 delete a;

11

12 }

6.10 Using Dr. Memory http://www.drmemory.org

Here’s how Dr. Memory reports the errors in the above program:

~~Dr.M~~ Dr. Memory version 1.8.0

~~Dr.M~~

~~Dr.M~~ Error #1: UNINITIALIZED READ: reading 4 byte(s)

~~Dr.M~~ # 0 main [memory_debugger_test.cpp:6]

hi

~~Dr.M~~

~~Dr.M~~ Error #2: UNADDRESSABLE ACCESS beyond heap bounds: writing 4 byte(s)

~~Dr.M~~ # 0 main [memory_debugger_test.cpp:9]

~~Dr.M~~ Note: refers to 0 byte(s) beyond last valid byte in prior malloc

~~Dr.M~~

~~Dr.M~~ Error #3: INVALID HEAP ARGUMENT: allocated with operator new[], freed with operator delete

~~Dr.M~~ # 0 replace_operator_delete [/drmemory_package/common/alloc_replace.c:2684]

~~Dr.M~~ # 1 main [memory_debugger_test.cpp:10]

~~Dr.M~~ Note: memory was allocated here:

~~Dr.M~~ Note: # 0 replace_operator_new_array [/drmemory_package/common/alloc_replace.c:2638]

~~Dr.M~~ Note: # 1 main [memory_debugger_test.cpp:8]

~~Dr.M~~

~~Dr.M~~ Error #4: LEAK 4 bytes

~~Dr.M~~ # 0 replace_operator_new [/drmemory_package/common/alloc_replace.c:2609]

~~Dr.M~~ # 1 main [memory_debugger_test.cpp:5]

~~Dr.M~~

~~Dr.M~~ ERRORS FOUND:

~~Dr.M~~ 1 unique, 1 total unaddressable access(es)

~~Dr.M~~ 1 unique, 1 total uninitialized access(es)
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~~Dr.M~~ 1 unique, 1 total invalid heap argument(s)

~~Dr.M~~ 0 unique, 0 total warning(s)

~~Dr.M~~ 1 unique, 1 total, 4 byte(s) of leak(s)

~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of possible leak(s)

~~Dr.M~~ Details: /DrMemory-MacOS-1.8.0-8/drmemory/logs/DrMemory-a.out.7726.000/results.txt

And the fixed version:

~~Dr.M~~ Dr. Memory version 1.8.0

hi

~~Dr.M~~

~~Dr.M~~ NO ERRORS FOUND:

~~Dr.M~~ 0 unique, 0 total unaddressable access(es)

~~Dr.M~~ 0 unique, 0 total uninitialized access(es)

~~Dr.M~~ 0 unique, 0 total invalid heap argument(s)

~~Dr.M~~ 0 unique, 0 total warning(s)

~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of leak(s)

~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of possible leak(s)

~~Dr.M~~ Details: /DrMemory-MacOS-1.8.0-8/drmemory/logs/DrMemory-a.out.7762.000/results.txt

Note: Dr. Memory on Windows with the Visual Studio compiler may not report a mismatched free() / delete
/ delete [] error (e.g., line 10 of the sample code above). This may happen if optimizations are enabled and the
objects stored in the array are simple and do not have their own dynamically-allocated memory that lead to their
own indirect memory leaks.

6.11 Using Valgrind http://valgrind.org/

And this is how Valgrind reports the same errors:

==31226== Memcheck, a memory error detector

==31226== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.

==31226== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info

==31226== Command: ./a.out

==31226==

==31226== Conditional jump or move depends on uninitialised value(s)

==31226== at 0x40096F: main (memory_debugger_test.cpp:6)

==31226==

hi

==31226== Invalid write of size 4

==31226== at 0x4009A3: main (memory_debugger_test.cpp:9)

==31226== Address 0x4c3f09c is 0 bytes after a block of size 12 alloc'd

==31226== at 0x4A0700A: operator new[](unsigned long) (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==31226== by 0x400996: main (memory_debugger_test.cpp:8)

==31226==

==31226== Mismatched free() / delete / delete []

==31226== at 0x4A07991: operator delete(void*) (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==31226== by 0x4009B4: main (memory_debugger_test.cpp:10)

==31226== Address 0x4c3f090 is 0 bytes inside a block of size 12 alloc'd

==31226== at 0x4A0700A: operator new[](unsigned long) (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==31226== by 0x400996: main (memory_debugger_test.cpp:8)

==31226==

==31226==

==31226== HEAP SUMMARY:

==31226== in use at exit: 4 bytes in 1 blocks

==31226== total heap usage: 2 allocs, 1 frees, 16 bytes allocated

==31226==

==31226== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1

==31226== at 0x4A06965: operator new(unsigned long) (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==31226== by 0x400961: main (memory_debugger_test.cpp:5)

==31226==

==31226== LEAK SUMMARY:

==31226== definitely lost: 4 bytes in 1 blocks
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==31226== indirectly lost: 0 bytes in 0 blocks

==31226== possibly lost: 0 bytes in 0 blocks

==31226== still reachable: 0 bytes in 0 blocks

==31226== suppressed: 0 bytes in 0 blocks

==31226==

==31226== For counts of detected and suppressed errors, rerun with: -v

==31226== Use --track-origins=yes to see where uninitialised values come from

==31226== ERROR SUMMARY: 4 errors from 4 contexts (suppressed: 2 from 2)

And here’s what it looks like after fixing those bugs:

==31252== Memcheck, a memory error detector

==31252== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.

==31252== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info

==31252== Command: ./a.out

==31252==

hi

==31252==

==31252== HEAP SUMMARY:

==31252== in use at exit: 0 bytes in 0 blocks

==31252== total heap usage: 2 allocs, 2 frees, 16 bytes allocated

==31252==

==31252== All heap blocks were freed -- no leaks are possible

==31252==

==31252== For counts of detected and suppressed errors, rerun with: -v

==31252== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2 from 2)

6.12 How to use a memory debugger

• Detailed instructions on installation & use of these tools are available here:
http://www.cs.rpi.edu/academics/courses/spring21/csci1200/memory_debugging.php

• Memory errors (uninitialized memory, out-of-bounds read/write, use after free) may cause seg faults, crashes,
or strange output.

• Memory leaks on the other hand will never cause incorrect output, but your program will be inefficient and
hog system resources. A program with a memory leak may waste so much memory it causes all programs on
the system to slow down significantly or it may crash the program or the whole operating system if the system
runs out of memory (this takes a while on modern computers with lots of RAM & harddrive space).

• For many future homeworks, Submitty will be configured to run your code with Dr. Memory to search for
memory problems and present the output with the submission results. For full credit your program must be
memory error and memory leak free!

• A program that seems to run perfectly fine on one computer may still have significant memory errors. Running
a memory debugger will help find issues that might break your homework on another computer or when
submitted to the homework server.

• Important Note: When these tools find a memory leak, they point to the line of code where this memory
was allocated. These tools does not understand the program logic and thus obviously cannot tell us where it
should have been deleted.

• A final note: STL and other 3rd party libraries are highly optimized and sometimes do sneaky but correct and
bug-free tricks for efficiency that confuse the memory debugger. For example, because the STL string class
uses its own allocator, there may be a warning about memory that is “still reachable” even though you’ve
deleted all your dynamically allocated memory. The memory debuggers have automatic suppressions for some
of these known “false positives”, so you will see this listed as a “suppressed leak”. So don’t worry if you see
those messages.
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6.13 Diagramming Memory Exercises

• Draw a diagram of the heap and stack memory for each segment of code below. Use a “?” to indicate that the
value of the memory is uninitialized. Indicate whether there are any errors or memory leaks during execution
of this code.

class Foo {

public:

double x;

int* y;

};

Foo a;

a.x = 3.14159;

Foo *b = new Foo;

(*b).y = new int[2];

Foo *c = b;

a.y = b->y;

c->y[1] = 7;

b = NULL;

int a[5] = { 10, 11, 12, 13, 14 };

int *b = a + 2;

*b = 7;

int *c = new int[3];

c[0] = b[0];

c[1] = b[1];

c = &(a[3]);

• Write code to produce this diagram:

b:

4.2

2.9

8.6

stack heap

6.5

3.4

5.1

a:

6.14 Solutions to Diagramming Memory Exercises

heap

7
?

x: 3.14
y:

b:
c:

a:

y:
x: ?

NULL

stack

12

14

int* a

int* b

int* c

10

11

13

7

7

13

?

the stackthe heap

Thereisamemoryleakof
3intsinthisprogram.

doublea[3];

double*b=newdouble[3];

a[0]=4.2;

a[1]=8.6;

a[2]=2.9;

b[0]=6.5;

b[1]=5.1;

b[2]=3.4;
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