
CSCI-1200 Data Structures — Spring 2022
Lab 2 — C++ Classes

Checkpoint 1 will be available at the start of Wednesday’s lab.

For the rest of this lab, you will implement a simple C++ class named Time. It represents all possible times
in a 24-hour period, including hours, minutes and seconds. An immediate representation issue is how to
handle morning (am) and afternoon (pm) times. We could have a separate bool indicating whether the time
is am or pm. It is easier, however, to represent the hours in military time. This means that the hours of the
day are numbered from 0 to 23, with 13 being 1 pm, 14 being 2 pm, etc.

Your notes from Lecture 3 with the example Date class will be helpful in completing this lab.

Checkpoint 2 estimate: 20-40 minutes

In the second checkpoint you will get started by implementing the initial class design, several member
functions, and a simple main program to test your class.

The instructions below describe how to build your executable using from the command line using g++ or
clang++ using the WSL or UNIX terminal. Even if you plan to use Visual Studio or another IDE for the
bulk of your work this semester, you are required to also show that you can successfully build and run this
lab using g++ from a terminal on your own machine.

http://www.cs.rpi.edu/academics/courses/spring22/csci1200/labs/02_classes/main.cpp

• Make a subfolder inside of your Data Structures labs directory for lab 2. We provide basic testing code
in main.cpp. You’ll need to create Create 2 new empty code files named time.h and time.cpp. Note
that in C++ the name of the header and implementation file are not required to exactly match the
name of the class, but it is good coding style to do so.

• Begin work on time.h. Within the file, declare a class called Time. Follow the form and syntax of the
Date class from Lecture 3. Read the syntax carefully (such as the semi-colon at the end of the class
declaration). Add private member variables for the hour, minute and second. In the public area of
the class, declare two constructors: one, the default constructor, should initialize each of the member
variables to 0; the other, having three arguments, accepts initial values for the hour, minute and second
as function call arguments. Declare member functions to access the values of the hour, the minute and
the second (three different member functions). It will be crucial for Checkpoint 3 to make these const.
(Recall: a const member function can not change the member variables.)

Don’t write the body of any of the functions in the time.h file. Save all the implementation for the
time.cpp file.

• Review the provided main.cpp. Note that we must #include "time.h" in addition to including
#include <iostream>. (Note: We use angle brackets for standard library includes and double quotes
for our custom header files in the working directory.) The main program creates multiple Time objects,
using the two different constructors and uses the functions that access the values of hour, minute and
second by printing the two times.

Note: There is a common confusion when creating a new variable using the default constructor:

http://www.cs.rpi.edu/academics/courses/spring22/csci1200/labs/02_classes/main.cpp


Time t1(5,30,59); // calls the non-default constructor w/ 3 integer arguments

Time t2(); // COMPILE ERROR - a buggy attempt to call the default constuctor

Time t3; // the *correct* way to call the default constructor

• Now implement all of the class constructors and member functions in the file time.cpp. Don’t forget to
add the line to #include "time.h". Any file that uses or implements Time functionality must include
the Time class header file.

• Now, compile your program and remove errors. Here’s where the difference between compiling and
linking matters.

When compiling using g++ on the command line, the two separate command lines:

g++ -c main.cpp -Wall -Wextra

g++ -c time.cpp -Wall -Wextra

compile the source code to create two object code files called main.o and time.o separately. The -c

means “compile only”. Compiler errors will appear at this point. If there are errors in main.cpp (or
time.cpp), then the files main.o (or time.o) will not be created. Use the ls command to check.

Important Note: We only compile .cpp files. We do not directly compile header files. Header files are
compiled only indirectly when included in a .cpp file.

Once you have driven out all of the compiler errors, you can “link” the program using the command:

g++ main.o time.o -o time_test.exe

to create the executable called time test.exe. If you have not defined all of the necessary member
functions in the Time class, then you would see “linking” errors at this point. You can combine all
three command lines (compiling each of the 2 .cpp files to 2 object files and linking all object files)
with this command:

g++ main.cpp time.cpp -o time_test.exe -Wall -Wextra

Which is more similar to what we did last lab. Equivalently, if those are the only two .cpp files in the
current directory, you can compile and link using the command line wildcard:

g++ *.cpp -o time_test.exe -Wall -Wextra

Note that this will not create the intermediate .o files and will only proceed to the linking step if the
two files compile cleanly.

To complete this checkpoint: Show compilation of the program using g++/clang++ within the
WSL or UNIX terminal, with all compiler errors removed and demonstrate correct execution of your
program. Yes, please show us you can compile from the terminal with g++, even if you plan to primarily
use Visual Studio or another IDE for the rest of the semester.

Checkpoint 3 estimate: 30-45 minutes

Create and test a few more member functions. This will require modifications to all three of the files. You
should uncomment the provided tests in main.cpp as you work, and add your own tests.

• setHour, setMinute, setSecond. Each should take a single integer argument and change the appropriate
member variable. For now, do not worry about illegal values of these variables (such as setting the
hour to 25 or the minute to -15). Assume whoever calls the functions does the right thing. In general,
this is a bad assumption, but we will not worry about it here.

• PrintAmPm prints time in terms of am or pm, so that 13:24:39 would be output as 1:24:39 pm. This
member function should have no arguments. Note that this requires some care so that 5 minutes and
4 seconds after 2 in the afternoon is output as 2:05:04 pm. The output should be to std::cout.

2



• Finally, let’s create a vector of times, sort it, and output the final order. You’ll need to create a
non-member function called IsEarlierThan which has the prototype:

bool IsEarlierThan(const Time& t1, const Time& t2);

It is very important that the two time objects are passed by constant reference. The prototype should
be in time.h (in the file, but outside of the class declaration) and the implementation should be in
time.cpp. It should return true if t1 is earlier in the day than t2. The tough part, from the logic
viewpoint, is being able to compare two times that have the same hour or even the same hour and the
same minute. Test your function IsEarlierThan.

If your IsEarlierThan function is correct, sorting becomes very easy. You just need to pass the
function to the sorting routine (make sure to #include <algorithm>). Be sure to study the output
and convince yourself things are debugged before asking a TA/mentor for checkoff.

sort(times.begin(), times.end(), IsEarlierThan);

Importance of const and reference: After you have debugged and tested this checkpoint, experiment
with const and pass-by-reference on the argument types for the function IsEarlierThan. Change them
from const pass-by-reference to pass-by-reference w/o the const. Use the -Wall compiler flag to enable
all warnings.

You may see compiler errors/warnings with some OS/compilers. The problem is that the compiler
expects the parameters of the comparison function (the 3rd argument to the sort function) to be in
a certain form and complains that it can not find the function when the parameters are not in this
form. Basically the STL sort function doesn’t want to sort a collection of data if that data is changing
during/because of the sorting process!

Note: Make sure to try this with the g++ compiler as the Visual Studio compiler may not be as
strict with const type checking. Also, try IsEarlierThan with pass-by-value parameters. What’s the
difference? Switch the function back to const pass-by-reference parameters before asking for a checkoff.

To complete this checkpoint: Show a TA your tested and debugged extensions. Be prepared to
discuss your implementation and const and pass-by-reference.

3


