
CSCI-1200 Data Structures — Spring 2023
Homework 2 — Hockey Classes

In this assignment you will parse and organize the game results from NCAA Division I Eastern College
Athletic Conference men’s ice hockey. Many of you are already familiar with the basics of this sport, as it
is one of Rensselaer’s most popular athletics events. We also summarize everything you need to know to
complete this assignment. Please read the entire handout before starting to code the assignment.

Ice Hockey

Here’s a crash course on the rules of ice hockey: Each game between two teams consists of three periods of
twenty minutes each. Six players from each team are allowed on the ice at any one time. The players work
together to score a goal by hitting the puck into the opponents’ net. Usually one of the six players on each
team is designated as the goalie to guard the net. When a goal is scored, one member of the team is credited
with the score, and up to two other players are credited with assisting in the score. There are many rules
and restrictions on the details of play. If these rules are violated the offending player/team is given a penalty
of a two, five, or ten minute duration. During the penalty time period, the offending player must sit out
(in the penalty box) and that team plays short-handed (with 5 players instead of 6). The other team has an
advantage during this time – the so-called power play.

If the score is tied at the end of the 3 regular periods, the teams will play an additional overtime period.
Play ends with the first goal scored in overtime (sudden death), and that team wins. If neither team scores
during overtime, we will consider the result of this game a tie. Note: Normally the game proceeds to a
shootout to resolve the tie. For more information see: http://en.wikipedia.org/wiki/Ice_hockey and
http://en.wikipedia.org/wiki/ECAC_Hockey.

You will parse an input file which contains the details for one or more hockey games. The data was
originally obtained from: http://collegehockeystats.net/1213/schedules/ecachm. The data has been
pre-processed to make your work a bit simpler. Here is a partial input file for your program:

Saturday, March 2, 2013

Cornell at Yale

PERIOD 1

6:22 Yale goal Kenny_Agostino (Andrew_Miller Jesse_Root)

7:42 Cornell goal Joel_Lowry (Greg_Miller)

PERIOD 2

PERIOD 3

2:01 Cornell penalty Erik_Axell 2:00 Tripping

2:07 Yale goal Stu_Wilson (Kenny_Agostino Andrew_Miller)

8:45 Cornell penalty Rodger_Craig 2:00 Interference

20:00 Cornell penalty Joel_Lowry 5:00 Contact_to_the_Head

20:00 Yale penalty Gus_Young 5:00 Contact_to_the_Head

FINAL

Cornell 1

Yale 2

Each game begins with the date and the names of the two teams – the away team is listed first, followed by
the home team. The details of the three periods (and overtime if necessary) begin with a label for the period
followed by information about each goal scored and penalty assessed in that period.

For a goal, we are given the time, team, the keyword “goal”, the name of the player who scored the goal, and
then in parentheses the names of zero, one, or two teammates who assisted in scoring the goal. The format
of time is mm:ss (minutes and seconds) since the start of that period (regular periods are 20 minutes long).

http://en.wikipedia.org/wiki/Ice_hockey
http://en.wikipedia.org/wiki/ECAC_Hockey
http://collegehockeystats.net/1213/schedules/ecachm

For a penalty, we are given the time, team, the keyword “penalty”, the name of the player who violated the
rule, the length of time the team will have to play with one fewer players on the ice, and a description of the
violation. At the end of the details the final total number of goals for each team is listed. In this game, Yale
scored more goals and is the winner.

Note that for ease of parsing we have replaced the spaces between players’ first and last names with
underscores (“_”). Similarly, all multi-word team names and multi-word penalty violation descriptions use
underscores or dashes instead of spaces. We strongly recommend that you do all of your parsing for this
homework using the STL stream operator >> and do not use getline. Your code should not need to rely on
the exact placement or quantity of spaces or tabs or newlines in the input.

Hint on reading the file: We suggest you structure your code to read in one string at a time. Depending on
the string, you’ll know what to read next. If you see the word “PERIOD”, you know to read in an integer for
the next period number. If you see a time (formatted with a ’:’ in the middle), you’ll know it is either a
goal or penalty. When you are reading in the names of the players who assisted in the goal, you’ll be looking
for a closed parenthesis ’)’ to know when the list of assisting players is complete.

File I/O and Command Line Arguments

Your program will run with three command-line arguments. The first argument will be the name of the
input file containing information for one or more ice hockey games. The second argument will be the name
of the output file where you will write the computed statistics. The third argument will indicate which
data table should be printed. Valid options for the third argument are: --team_stats, --player_stats, or
--custom_stats. For example, here is a valid command line to your program:

hockey_statistics.exe 2012_small.txt 2012_small_output.txt --team_stats

Statistics Collected and Output

When --team_stats is specified, your program should create a table with the teams sorted by win percentage,
with most wins at the top. We define win percentage as the (# of wins + 0.5 * # of ties) / total # of games
played. If two teams are tied in win percentage, the team with more total goals is listed first. The teams
are sorted alphabetically if they are tied in win percentage and total goals. Each row of the table includes
the team’s wins, losses, ties, win percentage, goals, and penalties. For example, here is the first part of the
output for the 2012_small.txt dataset:

Team Name W L T Win% Goals Penalties

Rensselaer 5 1 0 0.83 25 26

Yale 3 3 0 0.50 10 31

Cornell 2 4 0 0.33 15 33

Clarkson 2 4 0 0.33 11 37

The columns should be lined up and neatly justified. Your output spacing may be slightly different as long
as it is well-formatted and easy to read. When the --player_stats option is specified, your program should
instead create a table where the players are sorted first by their total number of goals plus assists (higher
total first), and secondarily by their number of penalties (lower total first), and if tied in both aspects, then
alphabetically by the name. Your table should look like the excerpt below from the complete table of all
players from the 2012_small.txt dataset:

Player Name Team Goals Assists Penalties

Ryan_Haggerty Rensselaer 3 6 3

Nick_Bailen Rensselaer 4 3 1

Greg_Miller Cornell 2 4 0

Jacob_Laliberte Rensselaer 2 4 0

2

Matt_Neal Rensselaer 2 4 0

Mike_Zalewski Rensselaer 4 2 0

Milos_Bubela Rensselaer 2 4 2

Dustin_Mowrey Cornell 0 6 4

Andrew_Miller Yale 1 4 0

When the --custom_stats option is specified your program should print an additional, interesting and
creative statistic that can be calculated from this data. Try to leverage some of the input data that was not
utilized in preparing the first two tables. For example, can we show that the trailing team becomes more
desperate and aggressive by examining the relative number of penalties in the final period? What are the
more common penalties? Are certain teams more guilty of certain violations? How significant is the power
play advantage? How many goals are scored during time intervals when the opposing team is playing with
only five players (or only four players on the ice if two players from the same team are in the penalty box at
the same time)? How significant is the “home field advantage”? Do some teams play relatively better at the
beginning or end of the season?

Write a concise description (< 200 words) of your new statistic. What question you are trying to answer
with your statistic? What data did you need to organize? What was interesting or challenging about the
implementation of this statistic? Put this description in your plaintext README.txt file along with any other
notes for the grader. Be sure to tell the grader which dataset best demonstrates your new statistic and
include that output.txt file with your submission. Feel free to create your own dataset and include it and
the corresponding output with your submission.

There are many possible data structure class designs that are similarly effective and elegant and appropriate
for solving this problem. Your plans for your 3rd statistic will likely influence your overall design. Note that
you do not need to store all of the information and relationships from the input file. Store the information
that is necessary to elegantly organize the data that you need for the three parts of the output. Extra credit
will be awarded to particularly interesting statistics that require clever programming.

Useful Code

To control the formatting of your tables, you’ll want to read up on the various I/O manipulators:
std::setw(int), std::setprecision(int), std::fixed, std::left, etc. To use those formatting controls
you’ll need to #include <iomanip>. And don’t forget about the sort function that can be used to order
the contents of a vector, and that you can create custom comparison functions for sorting.

Program Requirements & Submission Details

Your program should involve the definition of at least two classes that have their own .h and .cpp files,
named appropriately. Initially you should focus on the smaller datasets. Once the basics are working you
can extend your solution to handle the bigger test cases. Do all of your work in a folder named hw2 inside of
your Data Structures homeworks directory.

Use good coding style when you design and implement your program. Be sure to make up new test cases
and don’t forget to comment your code! Review the “Good Programming Practices” section on the course
webpage to be sure that the TAs will be able give you credit for your hard work. A large portion of the TA
grade for this assignment will be awarded for good class design and organization. Make sure to use const
and pass-by-reference as appropriate. All class member variables should be private and the public accessor
and modifier functions should be thoughtfully designed.

3

http://www.cs.rpi.edu/academics/courses/spring23/csci1200/good_programming.php

Please use the provided template README.txt file for any notes you want the grader to read. You must do
this assignment on your own, as described in the “Academic Integrity for Homework” handout.
If you did discuss the problem or error messages, etc. with anyone, please list their names
in your README.txt file. When you’ve finished writing, testing, debugging, and commenting your code,
prepare and submit your assignment as instructed on the course webpage. Please ask a TA if you need help
preparing your assignment for submission or if you have difficulty writing portable code.

5 points on Test 3 + Test 4, plus passing the hidden simple test case by Wednesday night will earn you
a 1 day extension for HW2. Extensions will be posted Thursday morning and show up under “My Late
Days/Extensions” on Submitty. Even with the extension and your own late days, you cannot submit later
than the end of Saturday. The hidden simple test case uses different (but similar) input to Test 3 to prevent
hard coding (not solving the assignment). Hard coding misrepresents your work, is apparent when TAs do
their grading, and will result in a 0 on an assignment. If you don’t hard code your output, the hidden simple
test case score should be the same as your Test 3 score.

4

http://www.cs.rpi.edu/academics/courses/spring23/csci1200/academic_integrity.php
https://en.wikipedia.org/wiki/Hard_coding

