CSCI-1200 Data Structures — Spring 2023
Lecture 18 — Trees, Part 11

Review from Lecture 17
e Binary Trees, Binary Search Trees, & Balanced Trees
e STL set container class (like STL map, but without the pairs!)
e Finding the smallest element in a BST.

e Overview of the ds_set implementation: begin and find. (leetcode 700)

Today’s Lecture
e Warmup / Review: destroy_tree
e A very important ds_set operation insert (leetcode 701)

e In-order, pre-order, and post-order traversal

Finding the in-order successor of a binary tree node, tree iterator increment

Advanced tree structure discussion (leetcode 559, 589, 590)

e HWS discussion
18.1 Warmup Exercise

e Write the ds_set: :destroy_tree private helper function.

ds_set<T>

root:
size: 8 Node<T>

Node<T>

18.2 Insert

e Move left and right down the tree based on
comparing keys. The goal is to find the location to
do an insert that preserves the binary search tree
ordering property.

Node<T>
v 25
e We will always be inserting at an empty (NULL) I NULL r: NULL
pointer location.
e Exercise: Why does this work? Is there always Node<T> Node<T>
a place to put the new item? Is there ever more vi 10 vio 17
] L I: NULL 1: NULL

than one place to put the new item?

: NULL 1: NULI

e IMPORTANT NOTE: Passing pointers by reference ensures that the new node is truly inserted into the tree.
This is subtle but important.

e Note how the return value pair is constructed.

e Exercise: How does the order that the nodes are inserted affect the final tree structure? Give an ordering
that produces a balanced tree and an insertion ordering that produces a highly unbalanced tree.

18.3 In-order, Pre-order, Post-order Traversal

e Reminder: For an exactly balanced binary search tree with the elements 1-7:

— In-order: 123 4) 567
— Pre-order: (4) 213 657
— Post-order: 132 576 (4)
e Now let’s write code to print out the elements in a binary tree in each of these three orders. These functions

are easy to write recursively, and the code for the three functions looks amazingly similar. Here’s the code for
an in-order traversal to print the contents of a tree:

void print_in_order(ostream& ostr, const TreeNode<T>* p) {
if (p) {
print_in_order(ostr, p->left);
ostr << p->value << "\n";
print_in_order(ostr, p->right);
}
}

e How would you modify this code to perform pre-order and post-order traversals?

e What is the traversal order of the destroy_tree function we wrote earlier?

18.4 Tree Iterator Increment/Decrement - Implementation Choices

e The increment operator should change the iterator’s pointer to point to the next TreeNode in an in-order
traversal — the “in-order successor” — while the decrement operator should change the iterator’s pointer to
point to the “in-order predecessor”.

e Unlike the situation with lists and vectors, these predecessors and successors are not necessarily “nearby”
(either in physical memory or by following a link) in the tree, as examples we draw in class will illustrate.

e There are two common solution approaches:
— Each node stores a parent pointer. Only the root node has a null parent pointer. [method 1]

— Each iterator maintains a stack of pointers representing the path down the tree to the current node.
[method 2]

e If we choose the parent pointer method, we’ll need to rewrite the insert and erase member functions to
correctly adjust parent pointers.

e Although iterator increment looks expensive in the worst case for a single application of operator++, it is fairly
easy to show that iterating through a tree storing n nodes requires O(n) operations overall.

Exercise: [method 1] Write a fragment of code that given a node, finds the in-order successor using parent pointers.
Be sure to draw a picture to help you understand!

Exercise: [method 2] Write a fragment of code that given a tree iterator containing a pointer to the node and a
stack of pointers representing path from root to node, finds the in-order successor (without using parent pointers).

Either version can be extended to complete the implementation of increment/decrement for the ds_set tree iterators.

Exercise: What are the advantages & disadvantages of each method?

18.5 Limitations of Our BST Implementation

The efficiency of the main insert, find and erase algorithms depends on the height of the tree.

The best-case and average-case heights of a binary search tree storing n nodes are both O(logn). The worst-
case, which often can happen in practice, is O(n).

Developing more sophisticated algorithms to avoid the worst-case behavior will be covered in Introduction to
Algorithms. One elegant extension to the binary search tree is described below...

18.6 B+ Trees

Unlike binary search trees, nodes in B+ trees (and their predecessor, the B tree) have up to b children. Thus
B+ trees are very flat and very wide. This is good when it is very expensive to move from one node to another.

B+ trees are supposed to be associative (i.e. they have key-value pairs), but we will just focus on the keys.

Just like STL map and STL set, these keys and values can be any type, but keys must have an operator<
defined.

In a B tree key-value pairs can show up anywhere in the tree, in a B+ tree all the key-value pairs are in the
leaves and the non-leaf nodes contain duplicates of some keys.

In either type of tree, all leaves are the same distance from the root.

The keys are always sorted in a B/B+ tree node, and there are up to b — 1 of them. They act like b — 1 binary
search tree nodes mashed together.

In fact, with the exception of the root, nodes will always have between roughly g and b — 1 keys (in our
implementation).

If a B+ tree node has k keys keyo, keyr, keya, - . ., keyy—1, it will have k + 1 children. The keys in the leftmost
child must be < keyg, the next child must have keys such that they are >keyy and < key;, and so on up to
the rightmost child which has only keys >key_1.

HWS8 will focus on implementing some of the functionality of a B+ tree. It won’t be enough to replace a real
B+ tree, but it will be enough to understand how the tree works and construct trees.

c |

|

ant] e |

| /|

a ant| b c | d e | f

[19b)

Note: “a” will come before “ant” lexicographically, in other words “a” < “ant”

Considerations in a full implementation:

What happens when we want to add a key to a node that’s already full?
— How do we remove values from a node?

— How do we ensure the tree stays balanced?

— How to keep leaves linked together? Why would we want this?

— How to represent key-value pairs?

Exercise: Draw a B+ tree with b = 3 with values inserted in the order 1,2,3,4,5,6. Now draw a B+ tree with
b = 3 and values inserted in the order 6, 5,4, 3,2,1. Hint: The two trees have a different number of levels.

18.7 HWS Hints

You are not implementing a full B+ tree. Read the homework assignment carefully and keep it in mind if you
look up videos/notes on B+ trees.

You should put your implementation at the bottom of the .h file - do not change the forward declaration.

Use the provided .h file - don’t start from scratch. Since this is a templated class your entire implementation
can go in the .h file.

find() will only return NULL for an empty tree. Otherwise it will always return a leaf pointer. If the value is
in the tree, the pointer should point to the leaf containing the value. If the value is not in the tree, the leaf
should point to the last node visited in find(), which should be a leaf.

You will not be graded on test cases that you write. You do not need to submit any test cases. We will only
use your .h file and we will only read your .h file and README

Insertion order can make a HUGE difference. Try inserting a,b,c,d,e,f into a tree with b=3 and then try
inserting f,e,d,c,b,a into a tree with b=3. What happens and why?

Don’t try to use std::sort() to keep internal pointers sorted - because the nodes are templated, this creates a
big mess. You’re on your own if you want to pass a templated function to std::sort() as a 3"% argument.

PrintSideways() makes the split at b/2 nodes using integer division. Our tree printing functions use tabs (\t)
instead of spaces.

Compile with -Wall. Read all warnings. Fix all warnings. Read any compiler warnings on Submitty. Fix those
warnings too.

/- - -—- - oo
// TREE NODE CLASS
template <class T>
class TreeNode {
public:
TreeNode() : left(NULL), right(NULL)/*, parent(NULL)*/ {}
TreeNode(const T& init) : value(init), left(NULL), right(NULL)/*, parent(NULL)*/ {}
T value;
TreeNodex left;
TreeNode* right;
// one way to allow implementation of iterator increment & decrement
// TreeNode* parent;
};

B
// TREE NODE ITERATOR CLASS
template <class T>
class tree_iterator {
public:
tree_iterator() : ptr_(NULL) {}
tree_iterator(TreeNode<T>* p) : ptr_(p) {}
tree_iterator(const tree_iterator& old) : ptr_(old.ptr_) {3}
“tree_iterator() {}
tree_iterator& operator=(const tree_iterator& old) { ptr_ = old.ptr_; return *this; }
// operator* gives constant access to the value at the pointer
const T& operator*() const { return ptr_->value; }
// comparions operators are straightforward
bool operator== (const tree_iterator& rgt) { return ptr_ == rgt.ptr_; }
bool operator!= (const tree_iterator& rgt) { return ptr_ != rgt.ptr_; }
// increment & decrement operators
tree_iterator<T> & operator++() { /* discussed & implemented in Lecture 19 */

return *this;
}
tree_iterator<T> operator++(int) { tree_iterator<T> temp(*this); ++(*this); return temp;
tree_iterator<T> & operator--() { /* implementation omitted */ }
tree_iterator<T> operator--(int) { tree_iterator<T> temp(*this); --(*this); return temp;

private:
// representation
TreeNode<T>* ptr_;
+;

/7 - —-- —-- memmmeoen
// DS_SET CLASS
template <class T>
class ds_set {
public:
ds_set() : root_(NULL), size_(0) {}

ds_set(const ds_set<T>& o0ld) : size_(old.size_) { root_ = this->copy_tree(old.root_,NULL); }

“ds_set() { this->destroy_tree(root_); root_ = NULL; }
ds_set& operator=(const ds_set<T>& old) { /* implementation omitted */ }

typedef tree_iterator<T> iterator;

int size() const { return size_; }
bool operator==(const ds_set<T>& old) const { return (old.root_ == this->root_); }

}

}

// FIND, INSERT & ERASE

iterator find(const T& key_value) { return find(key_value, root_); }

std::pair< iterator, bool > insert(T const& key_value) { return insert(key_value, root_); }
int erase(T const& key_value) { return erase(key_value, root_); }

// OUTPUT & PRINTING

friend std::ostream& operator<< (std::ostream& ostr, const ds_set<T>& s) {
s.print_in_order(ostr, s.root_);
return ostr;

}

// ITERATORS

iterator begin() const {
if (!'root_) return iterator (NULL);
TreeNode<T>* p = root_;
while (p->left) p = p->left;
return iterator(p);

}

iterator end() const { return iterator(NULL); }

private:
// REPRESENTATION
TreeNode<T>* root_;
int size_;

// PRIVATE HELPER FUNCTIONS
TreeNode<T>* copy_tree(TreeNode<T>* old_root) { /* Implemented in Lab 9 */ }
void destroy_tree(TreeNode<T>* p) {

/* Implemented in Lecture 18 */

}
iterator find(const T& key_value, TreeNode<T>* p) { /* Implemented in Lecture 17 */ }

std: :pair<iterator,bool> insert(const T& key_value, TreeNode<T>*& p) {
// NOTE: will need revision to support & maintain parent pointers
if (Ip) {
p = new TreeNode<T>(key_value) ;
this->size_++;
return std::pair<iterator,bool>(iterator(p), true);
}
else if (key_value < p->value)
return insert(key_value, p->left);
else if (key_value > p->value)
return insert(key_value, p->right);
else
return std::pair<iterator,bool>(iterator(p), false);

}
int erase(T const& key_value, TreeNode<T>* &p) { /* Implemented in Lecture 19 */ }

void print_in_order(std::ostream& ostr, const TreeNode<T>* p) const {
if (p) {
print_in_order(ostr, p->left);
ostr << p->value << "\n";
print_in_order(ostr, p->right);
}
}

	 Warmup Exercise
	Insert
	In-order, Pre-order, Post-order Traversal
	Tree Iterator Increment/Decrement - Implementation Choices
	Limitations of Our BST Implementation
	B+ Trees
	HW8 Hints

