CSCI-1200 Data Structures — Spring 2023
Lecture 20 — Hash Tables

Review from Lecture 19

e Last pieces of ds_set: removing an item, erase, operator+-+

e Breadth-first and depth-first search

Announcements: Test 3 Information

e Thursday, April 6th from 6-7:50pm.

Student’s assigned test room, row, and seat assignments will be re-randomized. If on Tuesday evening you
still don’t have a seating assignment when you log onto Submitty, let us know via the ds_instructors
list.

No make-ups will be given except for pre-approved absence or illness, and a written excuse from the Dean
of Students or the Student Experience office or the RPI Health Center will be required.

If you have a letter from Disability Services for Students and you have not already emailed it to
ds_instructors@cs.rpi.edu, please do so by Tuesday 4:30pm. Shianne Hulbert will be in contact with
you about your accommodations for the test.

Coverage: Lectures 1-19, Labs 1-10, HW 1-8.

Practice problems from previous exams are available on the course website. Solutions to the problems will
be posted on Monday morning.

OPTIONAL: Prepare a 2 page, black & white, 8.5x11”, portrait orientation .pdf of notes you would like
to have during the exam. This may be digitally prepared or handwritten and scanned or photographed.
The file may be no bigger than 2MB. You will upload this file to Submitty (“Test 3 Notes Upload”) before
Wednesday night @11:59pm. We will print this and attach it to your test.

All students must bring their Rensselaer photo ID card.

Practice problems from previous tests are available on the course website (as of Friday 11am). Solutions
to the problems will be posted Monday at 10am.

Today’s Lecture

e Hash Tables, Hash Functions, and Collision Resolution (leetcode 1, 705, 706)

e Performance of: Hash Tables vs. Binary Search Trees

e Collision resolution: separate chaining vs open addressing

e STL’s unordered_set (and unordered_map)

Using a hash table to implement a set/map

Hash functions as functors/function objects (leetcode 1451: Rearrange Words in a Sentence)

Iterators, find, insert, and erase

20.1 Definition: What’s a Hash Table?

e A table implementation with constant time access.

Like a set, we can store elements in a collection. Or like a map, we can store key-value pair associations in
the hash table. But it’s even faster to do find, insert, and erase with a hash table! However, hash tables
do not store the data in sorted order.

e A hash table is implemented with an array at the top level.

e Each element or key is mapped to a slot in the array by a hash function.

20.2 Definition: What’s a Hash Function?

e A simple function of one argument (the key) which returns an integer index (a bucket or slot in the array).

e Ideally the function will “uniformly” distribute the keys throughout the range of legal index values (0 — k-1).

e What’s a collision?
When the hash function maps multiple (different) keys to the same index.

e How do we deal with collisions?
One way to resolve this is by storing a linked list of values at each slot in the array.

20.3 Example: Caller ID

e We are given a phonebook with 50,000 name/number pairings. Each number is a 10 digit number. We need to
create a data structure to lookup the name matching a particular phone number. Ideally, name lookup should

be O(1) time expected, and the caller ID system should use O(n) memory (n = 50,000).

e Note: In the toy implementations that follow we use small datasets, but we should evaluate the system scaled

up to handle the large dataset.
e The basic interface:

// add several names to the phonebook

add (phonebook, 1111, "fred");

add (phonebook, 2222, "sally");

add (phonebook, 3333, "george");

// test the phonebook

std::cout << identify(phonebook, 2222) << " is calling!" << std::endl;
std::cout << identify(phonebook, 4444) << " is calling!" << std::endl;

e We’ll review how we solved this problem in Lab 9 with an STL vector then an STL map.

implement the system with a hash table.

20.4 Caller ID with an STL Vector

// create an empty phonebook
std::vector<std::string> phonebook(10000, "UNKNOWN CALLER");

void add(std::vector<std::string> &phonebook, int number, std::string name) {
phonebook [number] = name; }

std::string identify(const std::vector<std::string> &phonebook, int number) {
return phonebook [number]; }

Exercise: What’s the memory usage for the vector-based Caller ID system?
What’s the expected running time for identify, insert, and erase?

20.5 Caller ID with an STL Map

// create an empty phonebook
std: :map<int,std::string> phonebook;

void add(std::map<int,std::string> &phonebook, int number, std::string name) {
phonebook [number] = name; }

std::string identify(const std::map<int,std::string> &phonebook, int number) {
map<int,std::string>::const_iterator tmp = phonebook.find(number);
if (tmp == phonebook.end()) return "UNKNOWN CALLER"; else return tmp->second;
}

Exercise: What’s the memory usage for the map-based Caller ID system?
What’s the expected running time for identify, add, and erase?

Finally, we’ll

20.6 Now let’s implement Caller ID with a Hash Table

#define PHONEBOOK_SIZE 10

class Node {
public:
int number;
string name;
Node* next;

};

// create the phonebook, initially all numbers are unassigned
Node* phonebook [PHONEBOOK_SIZE];
for (int i = 0; i < PHONEBOOK_SIZE; i++) {
phonebook[i] = NULL;
}

// corresponds a phone number to a slot in the array
int hash_function(int number) {

}

// add a number, name pair to the phonebook

void add(Node* phonebook [PHONEBOOK_SIZE], int number, string name) {

}

// given a phone number, determine who is calling

std::string identify(Node* phonebook [PHONEBOOK_SIZE], int number) {

20.7 Exercise: Choosing a Hash Function

e What’s a good hash function for this application?

e What’s a bad hash function for this application?

20.8 Exercise: Hash Table Performance

e What’s the memory usage for the hash-table-based Caller ID system?

©Ooo~NOOUTPd WNEFLO

5182764321

Y

dan
6175551212
fred
5182761234
ice
5182761267
carol
5182765678 5182764488
bob erin

e What’s the expected running time for identify, insert, and erase?

20.9 What makes a Good Hash Function?

e Goals: fast O(1) computation and a random, uniform distribution of keys throughout the table,
despite the actual distribution of keys that are to be stored.

e For example, using: f(k) = abs(k)%N as our hash function satisfies the first requirement, but may not
satisfy the second.

e Another example of a dangerous hash function on string keys is to add or multiply the ascii values of each char:

unsigned int hash(string const& k, unsigned int N) {
unsigned int value = 0;
for (unsigned int i=0; i<k.size(); ++i)
value += k[i]; // conversion to int is automatic
return value % N;

}

The problem is that different permutations of the same string result in the same hash table location.
e This can be improved through multiplications that involve the position and value of the key:

unsigned int hash(string const& k, unsigned int N) {
unsigned int value = 0;
for (unsigned int i=0; i<k.size(); ++i)
value = value*8 + k[i]; // conversion to int is automatic
return value % N;

}

e The 2nd method is better, but can be improved further. The theory of good hash functions is quite involved
and beyond the scope of this course.

20.10 How do we Resolve Collisions? METHOD 1: Separate Chaining

e Each table location stores a linked list of keys (and values) hashed to that location (as shown above in the
phonebook hashtable). Thus, the hashing function really just selects which list to search or modify.

e This works well when the number of items stored in each list is small, e.g., an average of 1. Other data
structures, such as binary search trees, may be used in place of the list, but these have even greater overhead
considering the (hopefully, very small) number of items stored per bin.

20.11 How do we Resolve Collisions? METHOD 2: Open Addressing

e In open addressing, when the chosen table location already stores a key (or key-value pair), a different table
location is sought in order to store the new value (or pair).

e Here are three different open addressing variations to handle a collision during an insert operation:

— Linear probing: If i is the chosen hash location then the following sequence of table locations is tested
(“probed”) until an empty location is found:

(A+1)%N, (A+2)%N, (G+3)%N, ...
— Quadratic probing: If i is the hash location then the following sequence of table locations is tested:
A+ %N, (i+2%2) %N, (i+3%3)%N, (i+4*4)%N,

More generally, the " “probe” of the tableis (i +c;j +c2j2) mod N where ¢; and ¢y are constants.

— Secondary hashing: when a collision occurs a second hash function is applied to compute a new table
location. This is repeated until an empty location is found.

e For each of these approaches, the find operation follows the same sequence of locations as the insert operation.
The key value is determined to be absent from the table only when an empty location is found.

e When using open addressing to resolve collisions, the erase function must mark a location as “formerly
occupied”. If a location is instead marked empty, find may fail to return elements in the table. Formerly-
occupied locations may (and should) be reused, but only after the find operation has been run to completion.

e Problems with open addressing:

— Slows dramatically when the table is nearly full (e.g. about 80% or higher). This is particularly problematic
for linear probing.

— Fails completely when the table is full.

— Cost of computing new hash values.

20.12 Hash Table in STL?

e The Standard Template Library standard and implementation of hash table have been slowly evolving over
many years. Unfortunately, the names “hashset” and “hashmap” were spoiled by developers anticipating the
STL standard, so to avoid breaking or having name clashes with code using these early implementations...

e STL’s agreed-upon standard for hash tables: unordered_set and unordered_map

e Depending on your OS/compiler, you may need to add the -std=c++11 flag to the compile line (or other
configuration tweaks) to access these more recent pieces of STL. (And this will certainly continue to evolve
in future years!) Also, for many types STL has a good default hash function, so you may not always need to
specify both template parameters!

20.13 Owur Copycat Version: A Set As a Hash Table

e The class is templated over both the key type and the hash function type.

template < class KeyType, class HashFunc >
class ds_hashset { - };

e We use separate chaining for collision resolution. Hence the main data structure inside the class is:
std::vector< std::list<KeyType> > m_table;

e We will use automatic resizing when our table is too full. Resize is expensive of course, so similar to
the automatic reallocation that occurs inside the vector push_back function, we at least double the size of
underlying structure to ensure it is rarely needed.

20.14 Our Hash Function (as a Functor or Function Object)

e Next lecture we’ll talk about “function objects” or “functors”.... A functor is just a class wrapper around a
function, and the function is implemented as the overloaded function call operator for the class.

e Often the programmer/designer for the program using a hash function has the best understanding of the
distribution of data to be stored in the hash function. Thus, they are in the best position to define a custom
hash function (if needed) for the data & application.

e Here’s an example of a (generically) good hash function for STL strings, wrapped up inside of a class:

class hash_string_obj {
public:
unsigned int operator() (std::string const& key) const {
// This implementation comes from
// http://www.partow.net/programming/hashfunctions/
unsigned int hash = 1315423911;
for(unsigned int i = 0; i < key.length(); i++)
hash “= ((hash << 5) + key[i] + (hash >> 2));

return hash;

e Once our new type containing the hash function is defined, we can create instances of our hash set object
containing std: :string by specifying the type hash_string_obj as the second template parameter to the
declaration of a ds_hashset. E.g.,

ds_hashset<std::string, hash_string_obj> my_hashset;

e Alternatively, we could use function pointers as a non-type template argument.
(We don’t show that syntax here!).

20.15 Hash Set Iterators

e Iterators move through the hash table in the order of the storage locations rather than the ordering imposed
by (say) an operator<. Thus, the visiting/printing order depends on the hash function and the table size.

— Hence the increment operators must move to the next entry in the current linked list or, if the end of the
current list is reached, to the first entry in the next non-empty list.

e The declaration is nested inside the ds_hashset declaration in order to avoid explicitly templating the iterator
over the hash function type.

e The iterator must store:

— A pointer to the hash table it is associated with. This reflects a subtle point about types: even though
the iterator class is declared inside the ds_hashset, this does not mean an iterator automatically knows
about any particular ds_hashset.

— The index of the current list in the hash table.

— An iterator referencing the current location in the current list.

e Because of the way the classes are nested, the iterator class object must declare the ds_hashset class as a
friend, but the reverse is unnecessary.

20.16 Implementing begin() and end()

e begin(): Skips over empty lists to find the first key in the table. It must tie the iterator being created to
the particular ds_hashset object it is applied to. This is done by passing the this pointer to the iterator
constructor.

e end(): Also associates the iterator with the specific table, assigns an index of -1 (indicating it is not a normal
valid index), and thus does not assign the particular list iterator.

e Exercise: Implement the begin() function.

20.17 Iterator Increment, Decrement, & Comparison Operators
e The increment operators must find the next key, either in the current list, or in the next non-empty list.

e The decrement operator must check if the iterator in the list is at the beginning and if so it must proceed to
find the previous non-empty list and then find the last entry in that list. This might sound expensive, but
remember that the lists should be very short.

e The comparison operators must accommodate the fact that when (at least) one of the iterators is the end, the
internal list iterator will not have a useful value.

20.18 Insert & Find
e Computes the hash function value and then the index location.

o If the key is already in the list that is at the index location, then no changes are made to the set, but an iterator
is created referencing the location of the key, a pair is returned with this iterator and false.

e If the key is not in the list at the index location, then the key should be inserted in the list (at the front is
fine), and an iterator is created referencing the location of the newly-inserted key a pair is returned with this
iterator and true.

e Exercise: Implement the insert () function, ignoring for now the resize operation.

e Find is similar to insert, computing the hash function and index, followed by a std::find operation.

20.19 Erase

e Two versions are implemented, one based on a key value and one based on an iterator. These are based on
finding the appropriate iterator location in the appropriate list, and applying the list erase function.

20.20 Resize

e Must copy the contents of the current vector into a scratch vector, resize the current vector, and then re-insert
each key into the resized vector. Exercise: Write resize()

20.21 Hash Table Iterator Invalidation

e Any insert operation invalidates all ds_hashset iterators because the insert operation could cause a resize of
the table. The erase function only invalidates an iterator that references the current object.

{}

/7
SSYTO ¥OIVYHALI FO puse //
R
{

{} (23773sTT w++ ‘di+ ! ()pus- [xspur wleTqedr w<-sy w =i d) zoF
fde+ {237 3STT W = d 3T 3STT usey
{()uthaq- [XopUT W]STAeY W<-SY W = I3T ISTT W

*3STT 8y3 ur Az3us 3seT 8Yy3 03 09 //

(xopuT w-- {()A3dwe- [XepUT W]aTgel W<-SY W 33 (Q =< X9PUT W ‘X8puTl wWw--) IOF
punoy sT erqe3 @y3 ur 3sTr A3dws-uou //
snotasxd ey3 TT3un oTqe3l 8Y3l UMOP YOoBQ ‘9STMISY3I0 //
} esT®
{ —— 13T 3ISTT W
(()utbaq: [¥opuT W]STgRY W<-SY W =j I3T ISTT W) IFT
z032I93T 3STT 9Y3 //
Juawezdep 3sn[“3STT 3ULSIIND 8yl FO 3IPJS Y3 3e 3,usre aMm JI //
} ()asad ptoa
erTqe3 8yl ur Axjus snortasad eyl purd //
{
{
{1- = XopuT w
osT®
pus 8y3 3p aIe oM ‘9sTMIdYI0 //
f()uTtbeq: [xopUT W]STgeY W<-SY W = IJT ISTT W
((()°zTs aTqel W<-SY W) IUT =j XSpUuT W) IFT
3IP3S 9yl 03 I3T 3ISTT W oyl ubIisse ‘punojy sT auo II //
{} (xeput w++
() Aydwe- [xepuT W]STgel W<-SY W 3% (()9ZTS° 9TCRI W<-SY W) JUT > XOPUT W

!X9puT W++) IOF

o7qe3 8y3 ur 3sTT A3dwe-uou 3Ixou 8yl pPurg //
} (O pus: [xSpuT w]oTqel W<-sY W == IJT 3ISTT W) IT
3ISIT SsTYy3 jJo pue oy3 e oI oM JI //

3STT @Yyl uTrT welr 3Ixau // {I3TTASTT W ++4
} () 3xeu proa
erqe3 8y3 ur Azjus 3Ixsu 8yl purdg //
:ojeatad

!dws] uanijsx
! ()ao1d<-sTy2
! (sTyax)dwsy x03RISIT
} (3uT)-——z03exadO I03RIS]T
{
!STYly uanzex
! ()nsad<-sTy2
} ()--x03exsado 3 x03RID]T
{
!dus] uanijsx
! () Ix2U<-STY
{(sTy3l«)dwel z03RISIT
} (3uT) ++I103exado I03RISD]T

{

1STUYlx uaniox

£() Ix2U<-STYI
} () ++x103eI19dO RIO03RIS]T
JUsWeIOSp pUP JUSWSIOUT //

{ £(I3T73sTT W 3bx =j I3T ISTT W' 3IFT 3% - =i XSPUT W' 3IT)

_i XopUuT W 3B6x =] XopuT W 3IIT _i sy w361 =| sy w-3I] uaniax }
(1361 ®m103RI9]T 3SUOD ‘3IT 3I0]1BISIT 3JISUOD) =;Iro3erado ToOq PUSTIT

{ (I3T73ISTT W 3BX == 23T 3ISTT W 3IIT || T- == XoOpur W 3IT)

3% XopUT W'1DI == XSpUT W 2IT 33 SY w BT == sy w'1IT uanisx }
(361 ®mI103RI9]T 3SUOD ‘3IT 3I0]1BISIT 3JFISUOD) ==I03eI9dO0 TOOQ PUSTIT

‘pus eyl e paubrsseun bureq //
S703PI93T 3STT 8yl I0J Junodoe 3snw szojerado uostredurod syl //

{ f{I3T73STT Wy uanldx } 3Isuod () yrxo03eisado 3adA1AeSy 3Isuod
*XOpUT JUSIIND 8y YO8YD 03 posdu JOoU S80p pup ‘I103®I83T ISTT //
jusrIno ay3 3noqe Axrom ATuo pesu zojersdo eousrejersp oyl //

{STYlx uanlax
23T 3STT W' PTO = I3T 3ISTT W
I/X9pUT W' PTO = XSpUT W
sy wepro = sy u
} (PTO ®3I03eI93T 3ISuod)=I103eIado RI0]JRISDIT
{} (T3T73STT W IIT)IIT ISTT W / (XSPUT W' IJT)XOPUT W ‘ (SY W IJT)Sy W :
(I3T 33SUOD I03BID]JT) I03BISAT
{} (T-)xepur w ‘(Q)sy w : ()IOjeI=a]T
go03e19do JuswubrsSse » SI1030NnI3SU0D AIPUIPIO //
:oT1and

{} (00T)I3TT3ASTT W (XOPUT)xXeput W /(sy)sy u :
(00T ZATTISTT USBY ‘XSPUT 3JUT ‘SU »ISSUSEY SP) 103BIS3T

{} (T-)xXepuT w ‘(SY)sy W : (SY yx 3IOSYSEY SP)I03RIa3T
ATuo 3esysey sp ay3z Aq esn 103 szojzonijsuod e3earad //
:o3eatad

XOpuUT JUSIINO Oyl 3P I03eI9]T JUSIIND /,/ {IAT ASTT W IFT ISTT ysey
oTQP] Ysey 8yl UT XSpuT JUSIINd // I{XopuT W JUT

{sy w y39sysey sp

NOIIVINASHIdAY YOIVYHAII //

:o3eatad

serTqeTIRPA 93PATId 03 SS900P SMOTT® // {19sysey Sp SSeTo pusTIJ
:otTand
} I03eI123T SSETD

‘pejerdwe] ATejeiedes J0U ST sSnyj pup SSeTO pojsesu e se paurjeq //
SSYTO ¥OIVMAII AHI //

//

:otTand

{I3T73STT Yysey I03eI93T: :<2dALA9Y>3STT: :pas sweusadiy gopadAz
:o3eatad
} 219sysey sp sse1o
< oungysey sseTdo ‘odArAsy sselo > o3eTdwsl
s3oefqo uorjouny e ‘uorjouny ysey ayl jo //
adA3 ey3 pue Asy jo odA3 8y3 yjzoq Isao pasjerdwsl ST I8sysey sp oyl //

<I03DSA> SPNTOUTH

<butays> opnTouUTH

<3ISTT> SPNIOUT#

<WweaI3lsoT> SPNIOUT#

‘uorjouny ysey oyl Aq pesodulT I19pio oyl 3snl[ST 31 ‘I9PIO //
Tnybutuesw Aue ur 389sysey oyl ybnoryj dels jJou op sI03RISIT Y31 //
JPY] ST 39SYSey Sp pur 39S Sp UsaM]Sq 9O0USISIJIP Teuislxe Axewrad //
oyl *9913 yoIpas AIpurq P JO pPPIISUT STQqP] YsSey © Se SSerdo 38s oyl //
Ty 3ISsysey sp SurISp#

TYT3ISsysey sp ISPUITH

2Z0Z 60:25:9T 0E I=W PeoM Y- ooT 3osysey sp

(d++

FTPUSH#
!
{

qeT IO 9I1n308T UT pojuswaTdwr //
} (9zZTs Mau 3uT paubTsun)oTgel 9ZTSSI PIOA
© Jng senreA awes a8yl ylIm o7qe] 8yl 8zTsaI //
:o3eatad

!Tpus::p3is >> 13S0

!dy >> , , >> I3s0
f(pue- [TleTaqer w =j d {()utheq- [T]oTqey w = d I3T ISTT Usey) IozF
fu tw >> T >> I380

}o(T++ f()9zTs eTqel w>T {0=T 3Jur psubrsun) o3
} (x3so ® wesax3so::p3s)ijutad proa
*A3r7ran qurad orrqnd v //

!d uanzsx
{1- = xoputr w-d
!(sTy3z)d z03RIO3T
} ()pue xo03RIL]T
*703RI93T puUS UP 23©38ID //

qeT I0 °9Injoe7 UTr pajuswerdwr //
} ()utbeq z03ERID3T
I03PI93T POIPTO0SSP UP 93P2I0 puPb 97qe3 8yl uT Arjus 3sITI 8yl purd //

f(x37723sTT wd)sseas [xopuT w-'d]J]olgel w
} (d 103eI9]T)SSeIS PTOA
031937 8yl e oseiy //

{1 uanjzex

! (d)eseas
} esT®

{0 uanisx
(OQpus == d) 3T

! (Aey)puty = d 103EISIT

‘uoT30UNy I03PIS]T 9SBIS 9yl 9sn pue Ay 8yl purg //
} (Ao nodAlrAey 3suod)oseis jur
Aoy oya eseiy //

{(d ‘xepuT ‘STY3])IOJRISIT uanlax
osT®
! ()puse<-sTyl urniax
(()pus* [xsputr]aTgey w == d) 3IFT
{(Aey ‘()pus- [xspuT]erqe] u
‘()utbaq- [xepuT]eTgel w)put3::pas = d 13T 3STT usey
{()ozTs"a[gel W % SNTeA UYsey = XopUuT 3uT paubrsun
{(Koy)ysey w = onTea ysey 3jur paubrsun
} (Ao nodAIASM 3ISUOD)pPUTI I03BISAT
puty 3STT pue burxspul ‘uorjouny ysey bursn ‘Aey eyl purd //

qeT 10 8In308T UTr pojuswarduwr //

{(T+()92TS 9Tqe] WxZ)STARY 92TSSI<-STYL
(()®zTs oTqel W x HZISHY Y04 NOILOVIA QVOT =< 9zTs w) IFT

1GZ"T = HZISHY 904 NOILOVYdA dVOT 3IeOoTF 3Isuod
} (Aoy m3suod odATAS)) JI9SUT < TOOQ ‘I03eI93T >IiTed::p3s
roxsy] ApeeiTe jJou ST 3T JT Aoy ey3 3Ix9sur //

{ fozZTs w uan3iax } 3suod ()9zTS 3uT paubrsun

‘PTO = STUIx
(sTUl =i PTO®) 3IT
} (pTo ®<oungysey‘sdArAsy>39sysey sSp 3Isuod)=103erado 339SYsey sp

{} ()3ssusey sp_

{} (szTsTwrpro)ezTsTw ‘(9Tgel w-pro)argei w :
(P70 ®3<oungysel ‘odArAsy>19sysey Sp 3ISUoDd) 1ssysey sp
rs1030nI135U00 Adoo uor3oUny Jequweuw oyl sesn 3snl zozonijzsuod Adop //

(0)®zTs W ‘(22TS 3TUT)STged W : (0T = 92TS 3ITUT JUT poubrsun)iasysey sp
‘pesn AT3TorTdwt ST 309[QO0 uUOT3O0UNI YSeY 8Y3 I0F I03ONIISUOD //
arneyeq -erqe3l 9yl o 9zTs oyl sideooe oTqe3 Y3 I0F I03ONIISUOD)/

NOILVINIWATAWI LAS HSYH //
//
:oTTand

sAex jyo xsqunu // !{9zTs™w 3uT paubrsun
uor3ouny ysey // {ysey w ouniysey
orqe3 TEPN30P // {9TqeY W < <9dALASM>]ASTT::P1S >I0]JD9A::pP3S
NOIIVINASHYdHAY IHS HSYH //

//

tojeatad

Y- o9T 3osysey sp

220C 60:2G9:9T 0€ IBW PSM

	Definition: What's a Hash Table?
	Definition: What's a Hash Function?
	Example: Caller ID
	Caller ID with an STL Vector
	Caller ID with an STL Map
	Now let's implement Caller ID with a Hash Table
	Exercise: Choosing a Hash Function
	Exercise: Hash Table Performance
	What makes a Good Hash Function?
	How do we Resolve Collisions? METHOD 1: Separate Chaining
	How do we Resolve Collisions? METHOD 2: Open Addressing
	Hash Table in STL?
	Our Copycat Version: A Set As a Hash Table
	Our Hash Function (as a Functor or Function Object)
	Hash Set Iterators
	Implementing begin() and end()
	Iterator Increment, Decrement, & Comparison Operators
	Insert & Find
	Erase
	Resize
	Hash Table Iterator Invalidation

