CSCI-1200 Data Structures — Spring 2023
Lecture 22 — Priority Queues

Review from Lectures 20 & 21
e Hash Tables, Hash Functions, and Collision Resolution
e Performance of: Hash Tables vs. Binary Search Trees
e Collision resolution: separate chaining vs open addressing
e STL’s unordered_set (and unordered_map)

e Using a hash table to implement a set/map
— Hash functions as functors/function objects

— Iterators, find, insert, and erase
e Using STL’s for_each
e Something weird & cool in C++... Function Objects, a.k.a. Functors

e STL Queue and STL Stack (Leetcode 225: Implement Stack using Queues, Leetcode 232: Implement Queue
using Stacks)

Today’s Lecture
e Definition of a Binary Heap (Lec 21 Notes)

e What’s a Priority Queue? (Lec 21 Notes) (Leetcode 215: Kth Largest Element in an Array, Leetcode 373:
Find K Pairs with Smallest Sums, Leetcode 692: Top K Frequent Words)

A Priority Queue as a Heap

A Heap as a Vector

Building a Heap

Heap Sort (Leetcode 912: Sort an Array)

22.1 Implementing Pop (a.k.a. Delete Min)

e The value at the top (root) of the tree is replaced by the value stored in the last leaf node.
This has echoes of the erase function in binary search trees.

e The last leaf node is removed.
QUESTION: But how do we find the last leaf? Ignore this for now...

e The value now at the root likely breaks the heap property. We use the percolate_down function to restore
the heap property. This function is written here in terms of tree nodes with child pointers (and the priority
stored as a value), but later it will be written in terms of vector subscripts.

percolate_down(TreeNode<T> * p) {
while (p->left) {

TreeNode<T>* child;

// Choose the child to compare against

if (p—>right && p->right->value < p->left->value)
child = p->right;

else
child = p->left;

if (child->value < p->value) {
swap(child, p); // value and other non-pointer member vars

p = child;
}
else
break;
}

}
22.2 Implementing Push (a.k.a. Insert)
e To add a value to the heap, a new last leaf node in the tree is created to store that value.
e Then the percolate_up function is run. It assumes each node has a pointer to its parent.

percolate_up(TreeNode<T> * p) {
while (p->parent)

if (p->value < p->parent->value) {
swap(p, parent); // value and other non-pointer member vars
p = p—>parent;

}

else
break;

22.3 Push (Insert) and Pop (Delete-Min) Usage Exercise

Suppose the following operations are applied to an initially empty binary heap of integers. Show the resulting heap
after each delete_min operation. (Remember, the tree must be complete!)

push 5, push 3, push 8, push 10, push 1, push 6,

pop,
push 14, push 2, push 4, push 7,

pop,
pop,
pop

22.4 Heap Operations Analysis

e Both percolate_down and percolate_up are O(logn) in the worst-case. Why?

e But, percolate_up (and as a result push) is O(1) in the average case. Why?

22.5 Implementing a Heap with a Vector (instead of Nodes & Pointers)

e In the vector implementation, the tree is never explicitly constructed. Instead the heap is stored as a vector,
and the child and parent “pointers” can be implicitly calculated.

e To do this, number the nodes in the tree starting with 0 first by level (top to bottom) and then scanning across
each row (left to right). These are the vector indices. Place the values in a vector in this order.
e As a result, for each subscript, 1,
— The parent, if it exists, is at location | (i — 1)/2].
— The left child, if it exists, is at location 2i 4+ 1.
— The right child, if it exists, is at location 27 + 2.

e For a binary heap containing n values, the last leaf is at location n — 1 in the vector and the first node with
less than two children is at location |(n —1)/2].

e The standard library (STL) priority_queue is implemented as a binary heap.

22.6 Heap as a Vector Exercises

e Draw a binary heap with values: 52 13 48 7 32 40 18 25 4, first as a tree of nodes & pointers, then in vector
representation.

e Starting with an initially empty heap, show the vector contents for the binary heap after each delete min
operation.

push 8, push 12, push 7, push 5, push 17, push 1,

pop.,
push 6, push 22, push 14, push 9,

pop,
pop.,

22.7 Building A Heap

e In order to build a heap from a vector of values, for each index from [(n—1)/2| down to 0, run percolate_down.
Show that this fully organizes the data as a heap and requires at most O(n) operations.

o If instead, we ran percolate_up from each index starting at index 0 through index n-1, we would get properly
organized heap data, but incur a O(nlogn) cost. Why?

22.8 Heap Sort

e Heap Sort is a simple algorithm to sort a vector of values: Build a heap and then run n consecutive pop
operations, storing each “popped” value in a new vector.

e It is straightforward to show that this requires O(nlogn) time.

e Exercise: Implement an in-place heap sort. An in-place algorithm uses only the memory holding the input
data — a separate large temporary vector is not needed.

22.9 Summary Notes about Vector-Based Priority Queues

e Priority queues are conceptually similar to queues, but the order in which values / entries are removed
(“popped”) depends on a priority.

e Heaps, which are conceptually a binary tree but are implemented in a vector, are the data structure of choice
for a priority queue.

e In some applications, the priority of an entry may change while the entry is in the priority queue. This requires
that there be “hooks” (usually in the form of indices) into the internal structure of the priority queue. This is
an implementation detail we have not discussed.

	Implementing Pop (a.k.a. Delete Min)
	Implementing Push (a.k.a. Insert)
	 Push (Insert) and Pop (Delete-Min) Usage Exercise
	Heap Operations Analysis
	Implementing a Heap with a Vector (instead of Nodes & Pointers)
	 Heap as a Vector Exercises
	Building A Heap
	Heap Sort
	Summary Notes about Vector-Based Priority Queues

