
CSCI-1200 Data Structures
Test 1 — Practice Problems

Note: This packet contains selected practice problems from three previous exams. Your exam will contain
approximately one third to one half as many problems.

1 Short Answer Round [/ 16]

For each of the following statements, write if it is true or false, and then write 1-2 complete sentences
explaining why. Most of these statements are false.

1.1 sizeof() and Arrays [/4]

True or False Since sizeof(x) tells us how much memory the variable x takes, we can use sizeof() to find
out how many elements are in an array.

1.2 l-values [/4]

True or False 500 can be used as an l-value.

1.3 Number Types [/4]

True or False The following code will compile and print ”true”:

int x = 5;

float y = 7.2;

x = y;

if(x==7) std::cout << "true";

1

1.4 Vector Usage [/4]

True or False The following code will compile and print ”true” Hint: The fill constructor arguments are
correct, and you can assume the correct header files are included.

std::vector<int> x(5,5);

std::vector<float> y(5,7.2);

x=y;

if(x[0]==7) std::cout << "true";

2

2 Image Flood Fill [/ 24]

A popular operation not written in in Homework 1 is “floodfill” (“paint bucket”). floodfill takes a starting
position (x,y), where x is the row and y is the column, a vector of strings that is the image, and a fill
character. The function will change all pixels with the same value as (x,y) that can be reached by making
a path starting from (x,y) and using only adjacent pixels (no diagonals) with the same value. Input pixel
values will not be whitespace. Fill in the blanks in the code below to complete the floodfill() function.

starting_image:

.....XX.

.....XX.

.XXX...X

..XXXX..

..X..X..

floodfill(0,6,'Z',starting_image):

.....ZZ.

.....ZZ.

.XXX...X

..XXXX..

..X..X..

floodfill(3,2,'Z',starting_image):

.....XX.

.....XX.

.ZZZ...X

..ZZZZ..

..Z..Z..

floodfill(int x, int y, fill_char, image) {

char old_char = image[x][y];

= ' '; //mark the initial pixel

while(1) {

int tmp = 0;

for (unsigned int i = 0; i < ; i++) {

for (unsigned int j = 0; j < ; j++) {

if (image[i][j] ==) {

// for any pixel matching the original character, see if it neighbors a temporarily marked pixel

// legal_and_match(image,x,y,c) returns true if pixel (x,y) is within bounds and has value c

if (legal_and_match(image,) ||

legal_and_match(image,) ||

legal_and_match(image,) ||

legal_and_match(image,)) {

tmp++;

= ' ';

}

}

}

}

// if no pixels were changed, break out of the outer loop

if (tmp == 0) break;

}

// replace all temporary pixels with the foreground char (assume this is implemented)

replace(' ',fill_char,image);

}

3

3 Laundry Baskets [/ 43]

For this problem you will be writing two classes, Basket and Clothing. The Basket holds zero or more
pieces of Clothing and has a number to identify it. A Clothing object has an ID to identify it, and is
either dirty or clean. All Clothing starts dirty. Here is an example code segment that uses the two classes:

Basket b1(1), b2(24);

PrintBasket(b1);

Clothing c1("white socks");

b1.addToBasket(c1);

b2.addToBasket(c1);

PrintBasket(b2);

b1.washClothes();

b1.addToBasket(Clothing("ugly christmas sweater"));

PrintBasket(b1);

PrintBasket(b2);

And here is the output:

Basket 1 has 0 clothes:

Added white socks to basket 1

Added white socks to basket 24

Basket 24 has 1 clothes:

white socks (dirty)

Washing white socks

Added ugly christmas sweater to basket 1

Basket 1 has 2 clothes:

white socks (clean)

ugly christmas sweater (dirty)

Basket 24 has 1 clothes:

white socks (dirty)

3.1 Clothing Declaration (Clothing.h) [/ 11]

Start by writing the header file for the Clothing class.

sample solution: 13 line(s) of code

4

3.2 Clothing Implementation (clothing.cpp) [/ 6]

Next write the implementation of the Clothing class.

sample solution: 25 line(s) of code

5

3.3 Basket Declaration (Basket.h) [/ 13]

Next write the header file for the Basket class.

sample solution: 17 line(s) of code

6

3.4 Basket Member Functions (basket.cpp) [/ 8]

Write the implementation of the member functions of the Basket class.

sample solution: 20 line(s) of code

7

3.5 Basket Non-Member Functions (basket.cpp) [/ 5]

Finally, implement any non-member functions that were declared in Basket.h . You do not need to rewrite
any #include statements written in Section 3.4 .

sample solution: 15 line(s) of code

8

4 Memory Coding [/ 14]

Write code to produce the
memory diagram shown on
this page. An X over a line
denotes a pointer that has
been replaced by a more recent
pointer. Some types have been
left out.

heap

cat

20

1

3

2

stack

x

y

z

q[2]
ox

five

x

int p

int q[0]

sample solution: 12 line(s) of code

After code is run to produce the memory diagram shown above, is it possible to clean up all dynamically
allocated memory? If it is not, write 1-2 sentences explaining why. If it is possible, write the code that
will clean up the heap.

9

5 Parcel Delivery [/ 35]

In the following problem you will finish the implementation of a program that is designed to keep track
of several delivery drivers. Each driver is represented by a Driver object which has an ID, a name, a
maximum capacity in kg that their vehicle can carry, and the packages they are currently carrying. Each
package is represented by a Parcel object. For this problem, you can assume that all weights and capacities
are integers, and that there will not be duplicate driver IDs.

First, here’s main.cpp and the output that it produces:

#include "Driver.h"

#include "Parcel.h"

// print_drivers implemented, but not included in handout

// add_parcel written in 1.4

int main(){

std::vector<Driver> drivers;

drivers.push_back(Driver(124,"Chris",50));

drivers.push_back(Driver(8,"Sam",150));

drivers.push_back(Driver(35,"Taylor",200));

print_drivers(drivers);

add_parcel(drivers,Parcel("A7X",25),0);

add_parcel(drivers,Parcel("A7X",25),8);

add_parcel(drivers,Parcel("S41",126),8);

add_parcel(drivers,Parcel("AK3",10),35);

add_parcel(drivers,Parcel("P1",1),124);

add_parcel(drivers,Parcel("P2",1),124);

add_parcel(drivers,Parcel("P3",1),124);

print_drivers(drivers);

std::sort(drivers.begin(), drivers.end(), bySmallestWeight);

print_drivers(drivers);

return 0;

}

The output:

Driver Chris (#124) is carrying 0 of 50 kgs:

Driver Sam (#8) is carrying 0 of 150 kgs:

Driver Taylor (#35) is carrying 0 of 200 kgs:

Could not find driver #0

Added parcel A7X to driver #8

Failed to add parcel S41 to driver #8

Added parcel AK3 to driver #35

Added parcel P1 to driver #124

Added parcel P2 to driver #124

Added parcel P3 to driver #124

Driver Chris (#124) is carrying 3 of 50 kgs: #P1 (1) kg #P2 (1) kg #P3 (1) kg

Driver Sam (#8) is carrying 25 of 150 kgs: #A7X (25) kg

Driver Taylor (#35) is carrying 10 of 200 kgs: #AK3 (10) kg

Driver Chris (#124) is carrying 3 of 50 kgs: #P1 (1) kg #P2 (1) kg #P3 (1) kg

Driver Taylor (#35) is carrying 10 of 200 kgs: #AK3 (10) kg

Driver Sam (#8) is carrying 25 of 150 kgs: #A7X (25) kg

10

5.1 Parcel Class Declaration (Parcel.h) [/6]

Start by writing the class declaration in the Parcel.h file. The Parcel class should support the constructor
used in main.cpp, and should have two accessors, getWeight and getID. For this problem, please do not
use constructor initializer lists. You do not need to use include guards. Remember that one line functions
can be written in the .h file.

sample solution: 9 line(s) of code

5.2 Parcel Class Implementation (Parcel.cpp) [/5]

Now write the class implementation for the Parcel class in Parcel.cpp.

sample solution: 6 line(s) of code

11

5.3 Completing the Driver Class Implementation (Driver.cpp) [/10]

Assume that the implementation of the Driver class is complete except for getCurrentWeight and
bySmallestWeight. The .h file looks like this:

#include "Parcel.h"

class Driver{

public:

Driver(int id, const std::string& name, int capacity);

int getCapacity() const;

const std::string& getName() const;

int getID() const;

const std::vector<Parcel>& getParcels() const;

//getCurrentWeight definition would go here. Returns total weight the Driver is carrying.

bool addParcel(const Parcel& p); //Returns true if parcel was added, false if it was too big.

private:

int m_id;

std::string m_name;

int m_capacity;

std::vector<Parcel> m_parcels;

};

//bySmallestWeight definition would go here. Used in main.cpp

Finish the .cpp file by implementing both of the missing functions:

sample solution: 11 line(s) of code

12

5.4 add parcel Implementation (main.cpp) [/14]

Finally, write the add parcel function that goes in main.cpp.

sample solution: 16 line(s) of code

13

6 Memory Diagramming [/ 26]

Consider the following code:

int i,**j,k,l,*m;

i = 0;

j = new int*[3];

j[0] = new int;

j[1] = &i;

m = *(j+1);

j[1] = &k;

k=10;

*(j[0]) = 5;

j[2] = j[0];

*(j[0]) = 18;

*m = 4;

l = 3;

6.1 Memory Diagram [/18]

First, draw a memory diagram for the above code. Do not erase lines for pointers that change, instead put
an x over the middle of old line, and then draw the new pointer line.

14

6.2 Code Output [/8]

Next, write the output running this code will give:

std::cout << "i: " << i << std::endl;

std::cout << "j[0]: " << *j[0] << std::endl;

std::cout << "j[1]: " << *j[1] << std::endl;

std::cout << "j[2]: " << *j[2] << std::endl;

std::cout << "k: " << k << std::endl;

std::cout << "l: " << l << std::endl;

std::cout << "m: " << *m << std::endl;

15

7 Short Answer Round [/ 16]

For each of the following statements, write if it is true or false, and then write 1-2 complete sentences
explaining why.

7.1 Return Type [/4]

True or False If we are returning a string, we should always return using const std::string&.

7.2 const Speed [/4]

True or False Using const types changes how fast the program runs.

7.3 Reference Efficiency [/4]

True or False Passing by reference can be more efficient than passing by value.

7.4 const Members [/4]

True or False Every member function should have a const at the end of it. (e.g. int get var() const).

16

8 Phrase Counting [/ 20]

In this problem you will write a function to count how many times a string appears inside a collection
of other strings. Provided below is a code fragment which examines four strings: “banana”, “bandana”,
“cabana”, and “banabanbana”. For this example, the output of the function is how many times each word
had the letters “bana” consecutively in it. In this case, “bandana” has 0 instances of “bana” since the
letter d gets in the way.

std::vector<std::string> words;

words.push_back("banana");

words.push_back("bandana");

words.push_back("cabana");

words.push_back("banabanabana");

std::vector<int> counts = count_phrase(words,"bana");

for(unsigned int i=0; i<counts.size(); i++){

std::cout << words[i] << " contains \"bana\" " << counts[i]

<< " time(s)." << std::endl;

}

The expected output in this case:

banana contains "bana" 1 time(s).

bandana contains "bana" 0 time(s).

cabana contains "bana" 1 time(s).

banabanabana contains "bana" 3 time(s).

For this problem, the only STL string function you can use is size(). Do not use any C-style string functions
(e.g. strcmp()).

Your answer should go in the box on the next page.

17

Write count phrase:

sample solution: 21 line(s) of code

18

9 Movie Recommendations [/35]

If you have used Amazon, Netflix, Pandora, or Last.fm, you are probably familiar with recommendation
systems. The idea is that based on some criteria like past user selections, the system will recommend
new products. Recommendation systems can be quite sophisticated. In this problem, we will ask you to
consider part of a very much simplified system which will determine similar users based on their movie
recommendations.

In our system, viewers rate movies on a scale of 1 (terrible) to 5 (excellent). Not all users rated each movie.
If a user didn’t rate a movie, we will assume that user did not view the movie and the movie’s rating is
0. There are many measures of similarity or dissimilarity that could be used. In cases where the data is
somewhat sparse, a measure called cosine similarity is sometimes used. To measure the similarity between
two users, we use cosine similarity, defined:

similarity(x, y) =
x • y
||x|| ||y||

x • y is the dot product of the ratings of users x and y. It is defined x • y =
movies.size()−1∑

i=0
xiyi where xi is

the rating that user x gave movie number i. That is, the dot product is the sum of the products of the
ratings for the two viewers:

user0 movie0 rating × user1 movie0 rating + user0 movie1 rating × user1 movie1 rating...

||x|| =

√
movies.size()−1∑

i=0
x2i is the size of the rating vector. Similarity varies from 0 to 1. Users with similar

taste should have a high similarity in their ratings.

The system will require two classes: a class for a movie name and its rating, and a class for movie viewers.

The Rating class is defined as:

class Rating {

public:

Rating(const std::string& name, int rating) : movie_name_(name), rating_(rating)

{}

const std::string& getName() const {return movie_name_;}

int getRating() const {return rating_;}

void setRating(int rating) {rating_ = rating;}

private:

std::string movie_name_;

int rating_;

};

19

9.1 Movie Viewer Class [/11]

First create the class definition for the movie viewer class. The movie viewer class should hold a movie
viewer’s name and a vector of that viewer’s movie ratings, i.e. a vector of Rating objects. It must have an
accessor function to return the viewers name and a function that is passed a movie name and returns the
viewer’s numerical rating of that movie. If the viewer did not rate a movie, its rating is zero.

The viewer class must also have a function to add movie ratings. If the viewer has already rated a movie
(viewers sometimes rate a movie more than once), the current rating is replaced by the new rating. If the
viewer has not yet rated the movie, the new rating is added. You may define helper functions as needed.
Don’t worry about #include or #define statements.

sample solution: 10 line(s) of code

20

9.2 Movie Viewer Class Implementation [/14]

Now implement the constructors, member functions, and any helper functions as they would appear in the
.cpp file.

sample solution: 20 line(s) of code

21

9.3 Similarity Implementation [/10]

Now, implement the Similarity function. This function is not part of the movie viewer or rating class. It
is passed two movie viewer objects and a vector of movie names. It should return a double representing
the similarity between the two viewer’s ratings.

sample solution: 10 line(s) of code

22

10 Parsing Symbols [/20]

A consultant has decided to make a new programming language. This is a pretty complicated task, so they
have decided to ask for help from several people, including you. Since you’re a Data Structures student,
they think you can help them with a task called parsing, which is the process of reading in code and
breaking it up into pieces the compiler understands. However, even the task of parsing is difficult, so he’s
asked you to just do a smaller set of problems that are about handling the results of the parser. One job
of the parser is matching opening symbols like (, [, {, and closing symbols like),], and }.

To make the matching rules easy, the consultant has put all the opening symbols into one vector and
all the closing symbols into another vector. The closing symbol that matches opening symbol i (the ith
element in the opening symbol vector) is stored in position i of the closing symbol vector. For example,
the two vectors for the symbols we’ve mentioned so far are illustrated below. Keep in mind that they may
add more symbols, so you must write code that allows for any number of symbols.

opening symbols: ({ [

closing symbols:) }]

Our goal will be to interpret a parses data structure that has the indices of all pairs of matching symbols in
a given line of input. We can assume that we’re given partially processed input in the form of a vector of
strings. Every entry in the vector is either an opening symbol, a closing symbol, or input we can ignore.
The parses data structure is a 2-D vector. Each entry in the parses vector is a vector of unsigned integers
(positions). The vector of positions always has an even length, with even indices (0, 2, 4, . . .) containing the
position of an opening symbol in the input, and odd indices containing the position of the closing symbol
that matched it. Note that each symbol may only match another symbol once, so there should be no
duplicate entries in the parses vector. Additionally, an opening symbol can only match a closing symbol
that is further right in the input vector.

As an example using the above opening symbols and closing symbols, the input vector (entries separated
by spaces)

vector: [3 + 41] + (8 + 9) + (x + y) = [11 + 50]

index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Has a parse vector like:

(): 6 10 12 16

{}: <empty>

[]: 0 4 18 22

For this problem you may not use std::find. You are only allowed to use subscript indexing (e.g. a[5])
for accessing arrays and vectors. You should use no pointers and no iterators. You can always assume that
the opening symbols and closing symbols two vectors will match in length.

23

10.1 Printing Output [/12]

The first order of business is to write a function called PrintParses that takes in a vector of opening
symbols called opens, a vector of closing symbols called closes, a partially processed input vector, and a
matches vector called parses. This function should loop through the parses vector, and write the output
like shown below to standard output.

The example on the previous page will have the following output:

()

6 10 8 + 9

12 16 x + y

{ }

[]

0 4 3 + 41

18 22 11 + 50

sample solution: 13 line(s) of code

24

10.2 Vector Search [/8]

Before tackling the big problem, a more senior programmer on the parsing team has suggested you write
a helper function for them called WordInVector. This function will take in four arguments: a vector of
strings to search through, a string to look for, an unsigned integer we will store the position in, and an
unsigned integer we will use as a start index. The function should return true if the string we’re looking
for is in the vector of strings, and the position is not smaller than the start index.

If the word cannot be found in the vector, or can only be found before the start index, the function should
return false and the behavior of the position variable is undefined; in other words when returning false,
the position can be set to any value. If the function returns true, the position variable should be set to the
index of the first match that is on or after the start index.

For example:

//vec contains: Hello world goodbye world

unsigned int pos,pos2,pos3;

WordInVector(vec, "world", pos, 2);

WordInVector(vec, "world", pos2, 1);

WordInVector(vec, "there", pos3, 1);

std::cout << pos << " " << pos2 << " " << pos3 << std::endl;

This will print out: 3 1 <any unsigned integer>

sample solution: 9 line(s) of code

25

11 Bug Catching [/9]

The fragments of C++ code below contain errors. Your job is to first describe the error in one or two
concise and well-written sentences and then provide an appropriate correction that eliminates the error.

int* p;

int* q = p;

p = new int;

*p = 55;

std::cout << *q << std::endl;

std::vector<std::string> > pets;

pets.push_back("cat");

pets.push_back("dog");

pets.push_back("elephant");

std::cout << pets[1] << " " << pets[2] << " " << pets[3] << std::endl;

std::vector<std::string>& Vectorfy(const std::string& s) {

std::vector<std::string> v;

v.push_back(s);

return v;

}

26

12 Memory [/24]

Consider the following code:

int **a;

a = new int*[4];

a[0] = new int;

a[1] = new int[3];

a[2] = new int;

int b = 25;

int c[3] = {1,10,100};

*(a[2]) = 15;

a[0][0] = 8;

a[2] = &b;

a[2][0] = 1986;

a[2] = &(c[1]);

12.1 Memory Diagram [/18]

First, draw a memory diagram for the above code. Do not erase lines for pointers that change, instead put
an x over the middle of old line, and then draw the new pointer line.

27

12.2 Cleaning Up Memory [/6]

Right now the code leaks any memory still allocated. Write 3 delete statements that should go immediately
after the provided code.

Is there another leak? If there is, how would you fix it?

28

	 Short Answer Round [/ 16]
	 sizeof() and Arrays [/4]
	 l-values [/4]
	 Number Types [/4]
	 Vector Usage [/4]

	 Image Flood Fill [/ 24]
	 Laundry Baskets [/ 43]
	 Clothing Declaration (Clothing.h) [/ 11]
	 Clothing Implementation (clothing.cpp) [/ 6]
	 Basket Declaration (Basket.h) [/ 13]
	 Basket Member Functions (basket.cpp) [/ 8]
	 Basket Non-Member Functions (basket.cpp) [/ 5]

	 Memory Coding [/ 14]
	 Parcel Delivery [/ 35]
	Parcel Class Declaration (Parcel.h) [/6]
	Parcel Class Implementation (Parcel.cpp) [/5]
	Completing the Driver Class Implementation (Driver.cpp) [/10]
	add_parcel Implementation (main.cpp) [/14]

	 Memory Diagramming [/ 26]
	Memory Diagram [/18]
	Code Output [/8]

	 Short Answer Round [/ 16]
	 Return Type [/4]
	 const Speed [/4]
	 Reference Efficiency [/4]
	 const Members [/4]

	 Phrase Counting [/ 20]
	Movie Recommendations [/35]
	Movie Viewer Class [/11]
	Movie Viewer Class Implementation [/14]
	Similarity Implementation [/10]

	 Parsing Symbols [/20]
	Printing Output [/12]
	Vector Search [/8]

	 Bug Catching [/9]
	 Memory [/24]
	Memory Diagram [/18]
	Cleaning Up Memory [/6]

