
CSCI-1200 Data Structures
Test 2 — Practice Problems

Note: This packet contains practice problems from three previous exams. Your exam will contain approxi-
mately one third as many problems.

1

1 Checking It Thrice [/ 22]

Each row in the table below contains two statements labeled A and B. Put a checkmark 2� in up to three
boxes per row. Each correct checkmark is worth +1, each blank checkbox is worth +0, and to discourage
random guessing each incorrect checkmark is worth −2 points. Your score on this problem will not go
below 0. Only two A statements are true because of their corresponding B statements.

A is B is A is true
because of B

Statemtents
True False True False

2 2 2 2 2 A: STL vector erase() may invalidate an iterator.

B: For programs that need to do a lot of erasing, you should
use an STL list instead of an STL vector.

2 2 2 2 2
A: A memory debugger like Valgrind or Dr. Memory can
help find leaked memory.

B: A memory debugger like Valgrind or Dr. Memory shows
you the line you should have written delete/delete[] on to fix
the memory leak.

2 2 2 2 2 A: Vec push back() on average takes O(n)

B: Vec push back() sometimes has to allocate a new array
that’s 2*m alloc

2 2 2 2 2
A: If std::list<int>::iterator itr points to a valid location in
list l1, writing l1.erase(itr)++ may cause a memory error.

B: Incrementing the end() iterator in any STL list has
undefined behavior

2 2 2 2 2 A: STL lists / dslist do not have operator[] defined

B: Using operator[] on a pointer is the same as using pointer
arithmetic and then dereferencing the result.

2 2 2 2 2
A: Assuming std::vector<int>::iterator itr points to a
valid location in vector v1, writing v1.insert(itr,5);

std::cout << *itr; will always cause a memory error.

B: std::vector<T>::insert() returns an iterator because
insert() may invalidate the iterator passed in.

2 2 2 2 2
A: If std::vector<int> v1 is an empty vector, v1.end()--

will result in undefined behavior.

B: Decrementing the end() iterator in any STL vector has
undefined behavior.

2 2 2 2 2
A: If a recursive function does not use array indexes or
pointers, and there’s a segmentation fault in that function, it
means you must have infinite recursion.

B: Infinite recursion can result in a segmentation fault.

2 2 2 2 2 A: Writing int* x=5; will result a compiler error.

B: Memory addresses are not numbers, so you cannot store
a number in a pointer.

2 2 2 2 2
A: Writing dslist<int> x; x.push back(5);

dslist<int> y = x; will not result in calling
y.operator=(x) even though there is an = sign in the
last statement.

B: operator= can only be called on objects that are already
constructed.

2

2 Hop Lists [/ 37]

In this problem we will consider “hop lists”, a made-up data structure based on “skip lists”. A hop list is
a linked list using the Node class listed below. For simplicity we will not make it templated and our Nodes
will only contain integers. The next pointer works the same way as in the singly and doubly-linked lists
we have studied so far. However, the prev odd pointer is NULL for the 1st element in the list, and for all
other elements in an odd position (3rd in the list, 5th in the list, and so on), the prev odd pointer points
two elements back. There is a diagram below to illustrate how this would look for a list with five nodes
containing the values 10, 20, 30, 40, 50 in that order.

class Node{

public:

Node(int v) : val(v), next_(NULL), prev_odd_(NULL) {}

Node(int v, Node* next) : val(v), next_(next), prev_odd_(NULL) {}

int val;

Node* next_;

Node* prev_odd_;

};

10 20 30 40 50val

next_

prev_odd_

In the following sections you will write two different versions of AddPrevOddPointers. Both versions take
a Node pointer called head which points to the first Node in a hop list, and a Node pointer called tail.
After the function is done, all of the prev odd pointers should be set correctly, and tail should point to
the last element (furtherst from head) that is in an odd position. If there are not at least 3 Nodes in the
list, then tail should be NULL. You can assume that all Nodes have their next pointer correctly set before
AddPrevOddPointers is called.

An example of calling the function might look like:

//Start a new list

Node* head = new Node(2561);

/////Code to make the rest of the nodes/link forward omitted

PrintListForward(head); //"Printing forward list..."

Node* tail;

AddPrevOddPointers(head,tail);

PrintHopListBackwards(tail); //"Printing backwards..."

std::cout << std::endl;

Here are two examples:

Printing forward list: 10 20 30 40 50 60 70 80 90 100 110

Value at tail: 110

Printing backwards every-other list: 110 90 70 50 30 10

Printing forward list: 31 32 33 34 35 36 37 38 39 301

Value at tail: 39

Printing backwards every-other list: 39 37 35 33 31

3

2.1 AddPrevOddPointers (Recursive Version) [/ 18]

Write a version of AddPrevOddPointers that uses recursion.

sample solution: 23 line(s) of code

4

2.2 AddPrevOddPointers (Iterative Version) [/ 15]

Write a version of AddPrevOddPointers that does not use any recursion.

sample solution: 20 line(s) of code

2.3 AddPrevOddPointers Complexity [/ 4]

If the hop list has n elements, what is the running time order notation of the iterative version of
AddPrevOddPointers? What about for the recursive version?

5

3 Shape Overlays [/ 14]

Given a series of Shape objects in a vector<Shape> shapes, the code below should allocate and fill a 2D
dynamic array of integers, overlay that represents an overlay of all the shapes. If all of the shapes were
to be put on top of each other, an overlay would show for every position (x,y) how many shapes had a
pixel on at that position. You can assume that shapes is not empty and each shape is at least 1x1 in size.
The coordinates use the Cartesian coordinate system, where (0,0) is the origin, x = 1 is to the right of the
origin, and y = 1 is above the origin. You can also assume non-negative x,y coordinates for everything and
that the overlay starts with the bottom left corner at (0,0). The example shapes and overlay output have
(0,0) in the bottom left corner for easy visualization.

Shape 1 (outline rectangle)

Printing 4 x 4 overlay:

XXXX

X..X

X..X

XXXX

Lower left is at (0, 1)

Shape 2 (outline rectangle)

Printing 4 x 4 overlay:

XXXX

X..X

X..X

XXXX

Lower left is at (1, 1)

Shape 3 (filled in rectangle)

Printing 5 x 2 overlay:

XX

XX

XX

XX

XX

Lower left is at (1, 0)

Printing 5 x 5 overlay:

13321

12111

12111

13321

01100

class Point{

public:

Point(int x=0, int y=0) : m_x(x), m_y(y) {}

int m_x, m_y;

};

class Shape{

public:

bool pixelOn(int x, int y) const;

void getDimensions(int& width, int& height, Point& corner) const;

...

};

(1,0)

(0,1)

(1,1)

+ +

(0,0)

int** overlay

=

Shape 2 Shape 3Shape 1

void MakeOverlay(int**& overlay, int& height, const std::vector<Shape>& shapes){

int shape_height, shape_width, width;

height = width = 0; //Start by assuming a 0x0 overlay

Point shape_corner; //Holds the lower left corner of the shape

//Cycle through each shape and find the further-upper-right point

for(unsigned int i=0; i<shapes.size(); i++){

shapes[i].getDimensions(shape_width, shape_height, shape_corner);

height = std::max(height, shape_corner.m_y + shape_height);

width = std::max(width, shape_corner.m_x + shape_width);

}

//STUDENT PORTION #1: ALLOCATE OVERLAY, first box on next page goes here

//STUDENT PORTION #2: FILL IN OVERLAY, second box on next page goes here

PrintOverlay(overlay, width, height); //DO NOT WRITE THIS FUNCTION

}

6

3.1 #1: Allocate Overlay [/ 8]

Write the code that should go under the “STUDENT PORTION #1” comment in MakeOverlay.

sample solution: 7 line(s) of code

3.2 #2: Fill In Overlay [/ 6]

Write the code that should go under the “STUDENT PORTION #2” comment in MakeOverlay.

sample solution: 13 line(s) of code

7

4 Pivoting Lists [/ 24]

Write a void function MovePivots that takes an STL list<string> a and a constant STL list<string>

pivots. The function should rearrange a so that all instances of strings that are in both a and pivots are at
the front of a. The order of other elements in a should not be changed, and the elements that were moved
to the front should be in the order they were found in originally in a. The elements in a are not guaranteed
to be unique. Do not create any new lists/vectors/arrays. Do not use anything from <algorithm>. Your
function does not need to print anything.

Here are some examples of before and after the function, with five strings in pivots: ant bear cat dog eel
Before List (size 3): bob ant cod

After List (size 3): ant bob cod

Before List (size 3): eel ant cat

After List (size 3): eel ant cat

Before List (size 9): bob blob cod eel cod ant eel eel ant

After List (size 9): eel ant eel eel ant bob blob cod cod

4.1 MovePivots Implementation [/ 20]

sample solution: 18 line(s) of code

4.2 MovePivots Complexity [/ 4]

If there are p strings in pivots, and w strings in a, what is the running time order notation for MovePivots?
Explain your analysis.

8

5 Time Complexity [/ 20]

For each of the functions, write the time complexity assuming there are n elements stored in the container.
If there is a difference between C++98 and C++11, you should assume C++11. For the singly-linked list,
assume that we only have the head pointer and no other member variables. For the singly-linked list,
assume that erase() is given a pointer to the node we want to erase and a pointer to the node before the
one we want to erase.

STL vector

or Vec<T>
Singly-linked

List

STL list or

dslist<T>

size()

push back()

erase()

insert()

pop back()

Write 2-3 complete sentences about one of the above methods which is more efficient for STL lists than
for STL vectors and why this is the case.

9

6 Pokémon Battles [/ 16]

Players, known as trainers, collect teams of Pokémon. Trainers then have battles against each other where
they use one Pokémon at a time from their team to try and defeat their opponent’s team. Each face-off
between two Pokémon is considered a “fight”. A series of fights between two trainers is called a “battle”.
When a Pokémon loses a fight, it cannot be used again in the same battle. A battle is not over until one
of the trainers has no more usable Pokémon, at which point their opponent wins.

Each monster is represented by an instance of the class Pokemon. You do not need to know the details of
the class. To determine which Pokémon will win in a fight, the following function is used - it returns a
negative number if p1 wins, and a positive number if p2 wins. There are no ties.

int pokemonFight(const Pokemon & p1, const Pokemon & p2);

In this problem you will be completing an implementation for the recursive function TrainerOneWins().
The function takes in two Node pointers which represent two lists of Pokémon, trainer1 represents the
Pokémon belonging to Trainer 1, and trainer2 represents the Pokémon belonging to Trainer 2. The
function returns true if Trainer 1 wins, and false if Trainer 2 wins. A trainer wins if they still have
usable Pokémon but their opponent does not. If a trainer’s Pokémon loses, the trainer will use the next
Pokémon in their list.

In this problem, the Node class is defined as follows:

template <class T> class Node {

public:

T data;

Node* next;

};

As an example consider the following case. You do not need to know anything about specific Pokémon to
solve this problem.

Node<Pokemon>* list1 has Bulbasuar, Ivysaur, Geodude

Node<Pokemon>* list2 has Squirtle, Charmander

Running the following code:

if(TrainerOneWins(list1,list2)){

std::cout << "Trainer 1 wins." << std::endl;

}

else{

std::cout << "Trainer 2 wins." << std::endl;

}

A possible run using might look something like this. The output is handled in pokemonFight(), you should
not write any output statements:

Bulbasuar wins against Squirtle

Charmander wins against Bulbasaur

Charmander wins against Ivysaur

Geodude wins against Charmander

Trainer 1 wins.

10

6.1 TrainerOneWins Implementation [/12]

Fill in the blanks to finish TrainerOneWins():

bool TrainerOneWins(trainer1, trainer2)

{

if(trainer1 == NULL || trainer2 == NULL)

{

return ;

}

int fight_result = pokemonFight();

if(fight_result < 0){

return ;

}

else{

return ;

}

}

6.2 TrainerOneWins Complexity [/4]

If pokemonFight() is O(1), and there are m pokemon in Trainer 1’s list and n pokemon in Trainer 2’s list,
what is the time complexity for TrainerOneWins()?

11

7 Print-and-Modify Functions [/ 20]

In this problem you must infer the behavior of two functions from the code sample and output provided
below. You should not hard-code any values. Hint: Write out the relationship between the numbers before
and after AddByPositionAndPrint().

Running this code:

int main(){

std::list<int> counts = std::list<int>(3,0);

AddOneAndPrint(counts);

AddOneAndPrint(counts);

counts.push_back(9);

counts.push_front(11);

AddOneAndPrint(counts);

std::list<int> add_amounts;

add_amounts.push_back(4); add_amounts.push_back(1); add_amounts.push_back(-3);

add_amounts.push_back(0); add_amounts.push_back(4);

AddByPositionAndPrint(counts,add_amounts);

AddOneAndPrint(add_amounts);

return 0;

}

Produces this output, with one line coming from each non-STL function call:

Elements after updates: 1 1 1

Elements after updates: 2 2 2

Elements after updates: 12 3 3 3 10

Elements after updates: 16 4 0 3 14

Elements after updates: 5 2 -2 1 5

Your answers should go in the boxes on the next page.

12

7.1 AddByPositionAndPrint [/ 14]

Start by implementing AddByPositionAndPrint. Assume that the two arguments have the same size.

sample solution: 10 line(s) of code

7.2 AddOneAndPrint [/ 6]

Now implement AddOneAndPrint. Do not write any duplicate code.

sample solution: 3 line(s) of code

13

8 Mystery List Function [/ 20]

This problem focuses on a couple similar functions that are used to manipulate a collection of doubly linked
nodes:

template <class T>

class Node{

public:

Node(const T& v) : value(v), next(NULL), prev(NULL) {}

T value;

Node<T> *next, *prev;

};

We also define a function for printing nodes:

template <class T>

void PrintList(Node<T>* head){

std::cout << "List:";

while(head){

std::cout << " " << head->value;

head = head->next;

}

std::cout << std::endl;

}

Here is the mystery function you will be working with:

1 void MysteryA(Node<int>*& ptr1, Node<int>* ptr2){

2 while(ptr2 && (ptr2->value % 2 == 0 || ptr2->value % 7))

3 ptr2 = ptr2->next;

4 if(ptr2 && ptr2 != ptr1){

5 Node<int>* ptr3 = ptr2->next;

6 Node<int>* ptr4 = ptr2->prev;

7 ptr2->next = ptr1;

8 ptr1->prev = ptr2;

9 ptr1 = ptr2;

10 if(ptr3)

11 ptr3->next = ptr4;

12 if(ptr4)

13 ptr4->prev = ptr3;

14 ptr1->prev = NULL;

15 }

16 }

14

8.1 Visualizing MysteryA [/ 14]

In the box below, a list is shown. Below it is a copy of the nodes with none of the pointers added. Update
the bottom list to illustrate how the list has changed after a call to MysteryA(head,head).

5 4 7 8

head

5 4 7 8

head

The function is supposed to find the first odd multiple of 7 by using ptr2 and if it’s not already at the head,
the function should make ptr2 the new head by moving it to the front and updating links accordingly. It
also has to update the pointer passed in. Assume that ptr1 is a list head and that ptr2 belongs to the same
list as ptr1.

15

8.2 Fixing MysteryA [/ 6]

Consider the original list given in 4.1 and the following code fragment:

PrintList(head);

MysteryA(head,head);

PrintList(head);

Explain what will happen when this code runs. If there are bugs, explain which lines of code need to be
changed and what the corrected lines of code should be. Use the line numbers provided in the left margin
of the code.

16

9 Acrostic Printing [/ 21]

An “acrostic” is a word that is found by a column reading top-to-bottom when looking at several words
stacked on top of each other. For example, if our input is a vector of 4 strings:

Had

a

Nice

Day

then we could look at the first letter in each word to see that they spell a new word: “HaND”. Similarly,
we could look at the second letter in each word and see they spell: “aia”. Your task is to write a function,
acrostics(), which takes a vector of strings (each string contains exactly one word) and returns an array
of C-style strings where each string is one column of the acrostic. For the input shown above, the return
array should contain the following strings:

HaND

aia

dcy

e

You can ignore the null-terminating character, ’\0’ for simplicity. We have given you a partial implemen-
tation, you will need to fill in the rest of it. You should not use any arrays besides ret, and you should not
call the delete keyword. You cannot declare any new vectors/lists in your code. Finally, keep in mind
that you should be memory efficient and not allocate more space than you need in the return array.

Your answer should go in the box on the next page.

17

9.1 acrostic Implementation [/ 16]

char** acrostics(const std::vector<std::string>& v){

unsigned int max_return_length = 0;

for(unsigned int i=0; i<v.size(); i++){

max_return_length = std::max(max_return_length, (unsigned int)v[i].size());

}

std::vector<int> characters_per_string(max_return_length,0);

for(unsigned int i=0; i<v.size(); i++){

for(unsigned int j=0; j<v[i].size(); j++){

characters_per_string[j]++;

}

}

return ret;

}

9.2 acrostic Performance [/ 5]

If there are m input strings, the length of the longest input string is n, and there are c characters in all
input strings combined, what is the time complexity and the space (memory) complexity of acrostic?

18

10 Iterating Over a List and Inserting New Points [/21]

In this question you are asked to write two functions that use iterators to traverse and manipulate STL
lists.

Don’t worry about #include or #define statements. You may assume using namespace std.

10.1 Lists Finding Zeros [/6]

First, write a function that will be passed a const reference to an STL list of ints and returns a new list of
ints containing the positions of zeros in the input list. The function should iterate through the list using
a list iterator. It should not use find() or similar STL functions.

For example, if the original list contained 1 0 11 16 0 0 50 75 85 90 0, the returned list should contain 1 4
5 10.

sample solution: 12 line(s) of code

19

10.2 Lists Replacing Zeros[/15]

Now, write a second function. This void function will be passed a reference to an STL list of ints. In this
function each zero in the list should be replaced with the sum of the adjacent numbers. A zero in the first
or last position of the list should not be replaced. For example, if the list originally contained 1 0 11 16
0 0 50 75 85 90 0, the returned list will contain 1 12 11 16 16 66 50 75 85 90 0. Iterate through the list
from left to right and replace the elements sequentially. Notice how consecutive zeros are handled. The
first zero is replaced and the replacement value becomes the adjacent value for the next zero. That is, a
list containing x 0 0 0 y will become x x x x+y y, where x and y are integers.

The zeros are to be replaced in the original list. Do not make a copy of the list. Iterate through the list
and replace the elements. Do not use std::replace or std::find.

sample solution: 15 line(s) of code

20

11 Recursive Lists [/25]

In this question, don’t worry about #include or #define statements. You may assume using namespace

std.

11.1 Recursive Lists Delete a List[/6]

A templated class for Nodes is defined as:
template <class T>

class Node {

public:

T value;

Node<T>* next;

};

First, write a templated recursive function to delete a list of Node <T >s.

sample solution: 8 line(s) of code

21

11.2 Recursive Lists Recursive Merge [/19]

Merging two or more sorted lists is a common operation. It is a basic part of the merge sort which we
recently covered in lecture. The idea behind merging two lists is to travel through the two sorted input
lists and produce a third sorted list containing all of the elements of the two original lists.

For example, if the first list contains apple cow rhino tree and the second list contains cat dog mongoose
zebra, the merged list should contain apple cat cow dog mongoose rhino tree zebra.

Write a templated recursive function that takes two pointers to sorted singly linked lists of Nodes, defined
on the previous page, and a reference to a pointer to a singly linked list of Nodes. On return from the
function, the third list should contain the merged sorted list. Your merged list must copy the data in the
sorted lists.

The function must be recursive. Do not sort the list. Merge the lists, don’t sort. These are not STL lists,
use the pointers to iterate through the lists. You may include any helper functions that you find necessary.
Do not edit the Node class. You don’t have to write a main() function.

sample solution: 20 line(s) of code

22

12 Templating and Flattened Matrices [/19]

In Homework 3 we explored a matrix based around a 2D data structure. We will not be using the Matrix
class we designed, but instead will be using a templated T** data 2D data structure to represent a matrix.
The layout should look familiar.

In addition to the 2D representation, we would like to have the option to work on a “flattened” version
of the matrix, which is implemented in a T* data 1D structure. Both structures are depicted below. We
would like to be able to go between the two data structures.

T* data_1D

21

T** data_2D

heap

2

5

31

4 6

653 4

[
1 2 3
4 5 6

]
⇐⇒

Below is an example of how the two functions we will write might be used, along with the output from
this code fragment.

int** data_2D = new int*[2];

data_2D[0] = new int[3];

data_2D[1] = new int[3];

data_2D[0][0] = 1; data_2D[0][1] = 2;

data_2D[0][2] = 3; data_2D[1][0] = 4;

data_2D[1][1] = 5; data_2D[1][2] = 6;

int* data_1D = Flatten(data_2D,2,3);

for(int i=0; i<2; i++){

for(int j=0; j<3; j++){

int index;

int readval = Read1D(data_1D,2,3,i,j,index,-1);

std::cout << "(" << index << "," << readval << ") ";

}

}

//Assume and Delete1D/2D are already written

Delete2D(data_2D,2,3);

Delete1D(data_1D);

Output:

(0,1) (1,2) (2,3) (3,4) (4,5) (5,6)

23

12.1 Flattening the Matrix [/10]

Your first task is to implement the templated flatten function. flatten should take in data 2D as shown on
the previous page, and two integers m and n, which are the number of rows and the number of columns in
the data respectively. flatten should return a pointer to an equivalent 1D data structure.

If either the number of rows or columns is non-positive, the function should return a NULL pointer.

Do not change data 2D. Only use const and & when needed. Remember that since flatten is templated it
should work with any datatype. Do not leak any memory, any memory still allocated must be reachable
from the returned pointer.

sample solution: 14 line(s) of code

If the 2D matrix reprensentation contains m rows and n columns, what is the running time of the flatten
function?

24

12.2 Reading From the Flattened Matrix [/9]

Another important task is to be able to read from the data structure. Write a function Read1D that takes
in a 1D representation of data data 1D, two integers m and n which are the number of rows and columns
respectively, two integers row and col which are the row and column position we are trying to extract data
from, a reference to an integer index, and a �failure value which will be returned in case of an error.

Just like in Homework 3, we will number the upper left corner of a 2D structure as (0, 0) or row= 0,
col= 0.

The function should do two things. If the dimensions are legal (i.e. there are a positive number of rows
and columns), and the requested position can exist within the given bounds, then the function should
return the data stored at that position and set index to the index in data 1D where the data came from.
If the dimensions are illegal or the requested position is out of bounds, the index should be set to -1 and
failure value should be returned.

Keep in mind that the same data 1D object can be viewed different ways. For example, if there is a 2×3
data 2D example and data 1D example = flatten(data 2D example,. . .), then after calling
Read1D(data 1D example,1,6,1,1,index,-1), index will be -1, because in this example call we specified that
m= 1, n= 6, and there is no position (1, 1) inside of a 1×6 matrix.

On the other hand, using the same data 1D example, Read1D(data 1D example,2,3,1,1,index,-1) would
set index= 4.

Do not call any STL functions. Only use const and & when needed. Remember that since Read1D is
templated it should work with any datatype.

sample solution: 11 line(s) of code

25

13 Memory Errors [/9]

For each function or pair of functions below, choose the letter that best describes the memory error that
you would find. You can assume using namespace std and any necessary #include statements.

A) use of uninitialized memory

B) mismatched new/delete/delete[]

C) memory leak

D) already freed memory

E) no memory error

F) invalid write

char* a = new char[6];

a[0] = 'B'; a[1] = 'y';

a[2] = 'e'; a[3] = '\0';

cout << a << endl;

delete a;

int a[10];

int b[5];

for(int i=10; i>5; i--){

a[((i-6)*2+1)] = i*2;

a[((i-6)*2)] = b[i-6];

cout << a[(i-6)*2] << endl;

}

bool* is_even = new bool[10];

for(int i=0; i<=10; i++){

is_even[i] = ((i%2)==0);

}

delete [] is_even;

int a[2];

float** b = new float*[2];

b[0] = new float[1];

a[0] = 5; a[1] = 2;

b[0][0] = a[0]*a[1];

delete [] b[0];

b[0] = new float[0];

delete [] b;

string* str1 = new string;

string* str2;

string* str3 = new string;

*str1 = "Hello";

str2 = str1;

*str3 = *str1;

delete str1;

delete str3;

delete str2;

int x[3];

int* y = new int[3];

for (int i=3; i>=1; i--){

y[i-1] = i*i;

x[i-1] = y[i-1]*y[i-1];

}

delete [] y;

26

14 Complexity Code Writing [/ 9]

For each of the problems below, write a function void complexity(int n) that satisfies the big-O running
time. Assume that the input is size n. You should not use anything that requires a #include statement.
You should write no more than 7 lines of code per box (including the function prototype).

O(1):

void complexity(int n){

sample solution: 1 line(s) of code

}

O(n2):

void complexity(int n){

sample solution: 5 line(s) of code

}

O(log n)
For this one, do not use any loops, do not use math functions such as log() or log2():

void complexity(int n){

sample solution: 4 line(s) of code

}

27

	 Checking It Thrice [/ 22]
	 Hop Lists [/ 37]
	 AddPrevOddPointers (Recursive Version) [/ 18]
	 AddPrevOddPointers (Iterative Version) [/ 15]
	 AddPrevOddPointers Complexity [/ 4]

	 Shape Overlays [/ 14]
	 #1: Allocate Overlay [/ 8]
	 #2: Fill In Overlay [/ 6]

	 Pivoting Lists [/ 24]
	 MovePivots Implementation [/ 20]
	 MovePivots Complexity [/ 4]

	 Time Complexity [/ 20]
	 Pokémon Battles [/ 16]
	TrainerOneWins Implementation [/12]
	TrainerOneWins Complexity [/4]

	 Print-and-Modify Functions [/ 20]
	 AddByPositionAndPrint [/ 14]
	 AddOneAndPrint [/ 6]

	 Mystery List Function [/ 20]
	 Visualizing MysteryA [/ 14]
	 Fixing MysteryA [/ 6]

	 Acrostic Printing [/ 21]
	 acrostic Implementation [/ 16]
	 acrostic Performance [/ 5]

	 Iterating Over a List and Inserting New Points [/21]
	Lists Finding Zeros [/6]
	Lists Replacing Zeros[/15]

	 Recursive Lists [/25]
	Recursive Lists Delete a List[/6]
	Recursive Lists Recursive Merge [/19]

	 Templating and Flattened Matrices [/19]
	Flattening the Matrix [/10]
	Reading From the Flattened Matrix [/9]

	 Memory Errors [/9]
	 Complexity Code Writing [/ 9]

