
CSCI-1200 Data Structures
Final Exam — Practice Problems

NOTE: The final exam will be cumulative and comprehensive.
This packet contains sample questions from exams from multiple years.

1 Short Answer [/17]

1.1 Comparing Vectors & Arrays [/5]

The statements below can be used to compare and contrast arrays and vectors. For each statement, specify
“ARRAY” if it is only true for arrays, “VECTOR” if it is only true for vectors, “BOTH” if it is true
for both types, and “NEITHER” if it is true for neither type.

Knows how many elements it contains.

Can be used to store elements of any type.

Prevents access of memory beyond its bounds.

Is dynamically re-sizable.

Can be passed by reference.

1.2 Limited Looping [/3]

True or False There are some algorithms that must be written using a for loop and cannot be
written using a while or do – while loop.

1

2 Superhero Division [/14]

In this problem you will add a new operator to the Superhero class from lab. Spring 2018 note: We didn’t
do this lab, but you have everything you need in this question. Remember that a superhero has a name, a
true identity, and a power, but we cannot access the true identity of a Superhero object from the public
interface. Here is the basic Superhero class declaration:

class Superhero {

public:

// ACCESSORS

const string& getName() const { return name; }

const string& getPower() const { return power; }

// INPUT STREAM OPERATOR

friend istream& operator>>(istream &istr, Superhero &hero);

private:

// REPRESENTATION

string name;

string true_identity;

string power;

};

// OUTPUT STREAM OPERATOR

ostream& operator<<(ostream &ostr, const Superhero &hero);

And here is part of the Superhero class implementation:

ostream& operator<<(ostream &ostr, const Superhero &hero) {

if (hero.getPower() == "")

ostr << hero.getName() << " has no power" << endl;

else

ostr << "Superhero " << hero.getName() << " has power " << hero.getPower() << endl;

return ostr;

}

Now let’s define the /= operator on Superhero. This operator can be used to defeat a hero by dividing
them from their true identity. If an attacker learns a hero’s true identity and uses it against them, the
superhero loses his power. A superhero must carefully guard his true identity to prevent this attack. If the
attacker does not know and just incorrectly guesses the superhero’s true identity, this /= operation does
nothing. For example, suppose elastigirl is a Superhero object with name equal to “Elastigirl”, true
identity equal to “Zoe”, and power equal to “Flexible”. Then the statement:

cout << elastigirl;

would print this on the screen:

Superhero Elastigirl has power Flexible

But after executing the statement:

elastigirl /= ("Zoe");

the output of the variable elastigirl would print on the screen as:

Elastigirl has no power

2

2.1 Implementation Choices [/5]

Name the three different ways we can implement operator overloading. Which of these three is the most
appropriate choice for the /= operator described above? Why?

2.2 /= operator implementation [/9]

Now implement the /= operator. Part of your job is to carefully define the prototype for this function.
What should be added or changed in the superhero.h class declaration file? And what should be added
or changed in the superhero.cpp class implementation file? Be specific.

3

3 Valet Parking Maps [/38]

You have been asked to help with a valet parking system for a big city hotel. The hotel must keep track
of all of the cars currently stored in their parking garage and the names of the owners of each car. Please
read through the entire question before working on any of the subproblems. Here is the simple Car class
they have created to store the basic information about a car:

class Car {

public:

// CONSTRUCTOR

Car(const string &m, const string &c) : maker(m), color(c) {}

// ACCESSORS

const string& getMaker() const { return maker; }

const string& getColor() const { return color; }

private:

// REPRESENTATION

string maker;

string color;

};

The hotel staff have decided to build their parking valet system using a map between the cars and the
owners. This map data structure will allow quick lookup of the owners for all the cars of a particular color
and maker (e.g., the owners of all of the silver Hondas in the garage). For example, here is their data
structure and how it is initialized to store data about the six cars currently in the garage.

map<Car,vector<string> > cars;

cars[Car("Honda","blue")].push_back("Cathy");

cars[Car("Honda","silver")].push_back("Fred");

cars[Car("Audi","silver")].push_back("Dan");

cars[Car("Toyota","green")].push_back("Alice");

cars[Car("Audi","silver")].push_back("Erin");

cars[Car("Honda","silver")].push_back("Bob");

The managers also need a function to create a report listing all of the cars in the garage. The statement:

print_cars(cars);

will result in this report being printed to the screen (std::cout):

People who drive a silver Audi:

Dan

Erin

People who drive a blue Honda:

Cathy

People who drive a silver Honda:

Fred

Bob

People who drive a green Toyota:

Alice

Note how the report is sorted alphabetically by maker, then by car color, and that the owners with similar
cars are listed chronologically (the order in which they parked in the garage).

4

3.1 The Car class [/6]

In order for the Car class to be used as the first part of a map data structure, what additional non-
member function is necessary? Write that function. Carefully specify the function prototype (using const
& reference as appropriate). Use the example above as a guide.

3.2 Data structure diagram [/10]

Draw a picture of the map data structure stored by the cars variable in the example. As much as possible
use the conventions from lecture for drawing these pictures. Please be neat when drawing the picture.
Optional: You may also write a few concise sentences to explain your picture.

5

3.3 print cars [/9]

Write the print cars function. Part of your job is to correctly specify the prototype for this function. Be
sure to use const and pass by reference as appropriate.

3.4 remove cars [/13]

When guests pick up their cars from the garage, the data structure must be correctly updated to reflect
this change. The remove car function returns true if the specified car is present in the garage and false
otherwise.

bool success;

success = remove_car(cars, "Erin", "silver", "Audi");

assert (success == true);

success = remove_car(cars, "Cathy", "blue", "Honda");

assert (success == true);

success = remove_car(cars, "Sally", "green", "Toyota");

assert (success == false);

6

After executing the above statements the cars data structure will print out like this:

People who drive a silver Audi:

Dan

People who drive a silver Honda:

Fred

Bob

People who drive a green Toyota:

Alice

Note that once the only blue Honda stored in the garage has been removed, this color/maker combination
is completely removed from the data structure.

Specify the prototype and implement the remove car function.

7

4 Computational Desert Island [/]

Suppose that a monster is holding you captive on a computational desert island, and has a large file
containing double precision numbers that he needs to have sorted. If you write correct code to sort his
numbers he will release you and when you return home will be allowed to move on to DSA. If you don’t
write correct code, he will eventually release you, but only under the condition that you retake CS 1.
The stakes indeed are high, but you are quietly confident — you know about the standard library sort
function. (Remember, you are supposed to have forgotten all about bubble sort.) The monster startles
you by reminding you that this is a computational desert island and because of this the only data structure
you have to work with is a queue.

After panicking a bit (or a lot), you calm down and think about the problem. You realize that if you
maintain the values in the queue in increasing order, and insert each value into the queue one at a time,
then you can solve the rest of the problem easily. Therefore, you must write a function that takes a new
double, stored in x, and stores it in the queue. Before the function is called, the values in the queue are
in increasing order. After the function ends, the values in the queue must also be in increasing order, but
the new value must also be among them.

Here is the function prototype:

void insert_in_order(double x, queue<double>& q)

You may only use the public queue interface (member functions) as specified in lab. You may use a second
queue as local variable scratch space or you may try to do it in a single queue (which is a bit harder). Give
an “O” estimate of the number of operations required by this function.

8

5 Operations on Lists [/]

5.1 Reversing a dslist [/]

Write a dslist<T> member function called reverse that reverses the order of the nodes in the list. The
head pointer should point to what was the tail node and the tail pointer should point to what was the
head node. All directions of pointers should be reversed. The function prototype is:

template <class T> void dslist<T>::reverse();

The function must NOT create ANY new nodes.

5.2 Sublists [/]

Write a function to create a new singly-linked list that is a copy of a sublist of an existing list. The
prototype is:

Node<T>* Sublist(Node<T>* head, int low, int high)

The Node class is:

template <class T>

class Node {

public:

T value;

Node* next;

};

9

The new list will contain high-low+1 nodes, which are copies of the values in the nodes occupying positions
low up through and including high of the list pointed to by head. The function should return the pointer
to the first node in the new list. For example, in the following drawing the original list is shown on top
and the new list created by the function when low==2 and high==4 is shown below.

New list

3.1 2.4 8.7 9.4head

2.4 8.7 9.4nhead

14.2 0.9

Original list

A pointer to the first node of this new list should be returned. (In the drawing this would be the value
of nhead.) You may assume the original list contains at least low nodes. If it contains fewer than high

nodes, then stop copying at the end of the original list.

10

5.3 Splicing into a cs2list[/]

Write a cs2list<T> member function called splice that takes an iterator and a second cs2list<T>

object and splices the entire contents of the second list between the node pointed to by the iterator and
its successor node. The second list must be completely empty afterwards. The function prototype is:

template <class T>

void cs2list<T>::splice(iterator itr, cs2list<T>& second);

No new nodes should be created by this function AND it should work in O(1) time (i.e. it should be
independent of the size of either list).

6 Concurrency and Asynchronous Computing [/3]

Why might a group of dining philosophers starve?

A) Because it’s impossible to eat spaghetti with chopsticks.

B) Because they are all left-handed.

C) Because due to a bank error they didn’t have enough money in their joint account.

D) Because they didn’t all want to eat at the same time.

11

7 Garbage Collection [/12]

For each of the real world systems described below, choose the most appropriate memory management
technique. Each technique should be used exactly once.

A) Explicit Memory Management (C++) B) Reference Counting

C) Stop & Copy D) Mark-Sweep

7.1 Student Registration System [/3]

Must handle the allocation and shuffling of pointers as students register and transfer in and out of classes.
Memory usage will not be a deciding factor. Fragmentation of data should be minimized.

7.2 Playing Chess [/3]

Implementation of a tree-based algorithm for searching the game space. Remember that a tree is a graph
with no cycles.

7.3 Webserver [/3]

A collection of infrequently changing interconnected webpages. Any memory usage overhead should be
low. Pauses in service are tolerable.

7.4 Hand Held Game (e.g., GameBoy or PSP, etc.) [/3]

Performance critical application with extremely limited memory resources.

12

8 Short Answer [/22]

8.1 Garbage Identification [/7]

To which address in the memory below should the root variable point so that exactly 2 cells are garbage?
Draw a box and pointer diagram to justify your answer and state which 2 cells are garbage.

address 100 101 102 103 104 105 106 107

value a b c d e f g h

left 106 106 107 100 102 101 0 0

right 103 105 105 0 105 101 0 101

8.2 Stop and Copy Garbage Collection [/4]

What is the purpose of the forwarding address in Stop and Copy garbage collection? What will go wrong
if you neglect to record this value? Write 2 or 3 concise and well-written sentences.

13

8.3 Concurrency and Asynchronous Computing [/4]

When programming with multiple threads or processes, the correct use of mutexes (locks) and condition
variables will ensure that:

A) The program always returns the exact same answer.

B) The program returns an answer that was not possible if the program ran sequentially.

C) The entire program is atomic.

D) Each student in a large class will be able to successfully copy a complete set of lecture
notes (with no repetitions), even if there are multiple professors.

E) Deadlock will be avoided if there are multiple mutexes, but may still happen in systems
with a single lock.

14

9 Data Structures [/18]

Indicate by letter the data structure(s) that have each characteristic listed below.

A) vector B) list C) map D) set
E) priority queue F) hash table

allows efficient (sublinear) removal of the first and last
elements (or the minimum and maximum elements)

uses an array or vector as the underlying representation

uses a network of nodes connected by pointers as the
underlying representation

the underlying data structure must be “balanced” or well-
distributed to achieve the targeted performance

requires definition of operator< or operator>

entries cannot be modified after they are inserted
(requires re-insertion or re-processing of position)

duplicates are not allowed

allows sublinear merging of two of instances of this data
structure

15

10 Order Notation [/16]

Match the order notation with each fragment of code. Two of the letters will not be used.

A) O(n) B) O(1) C) O(nn) D) O(n2)
E) O(2n) F) O(log n) G) O(n log n) H) O(

√
n)

vector<int> my_vector;

// my_vector is initialized with n entries

// do not include initialization in performance analysis

for (int i = 0; i < n; i++) {

my_vector.erase(my_vector.begin());

}

map<string,int> my_map;

// my_map is initialized with n entries

// do not include initialization in performance analysis

my_map.find("hello");

int foo(int n) {

if (n == 1 || n == 0) return 1;

return foo(n-1) + foo(n-2);

}

int k = 0;

for (int i = 0; i < sqrt(n); i++) {

for (int j = 0; j < sqrt(n); j++) {

k += i*j;

}

}

set<string> my_set;

for (int i = 0; i < n; i++) {

string s;

cin >> s;

my_set.insert(s);

}

float* my_array = new float[n];

// do not include memory allocation in performance analysis

my_array[n/2] = sqrt(n);

16

11 Office Demolition [/31]

In this problem we will explore a simple class to manage the assignment of people to offices and desks.
Each Office object stores its name, the number of desks it can hold, and the names of the people assigned
to those desks. An office also stores a reference to a master queue of all the people who still need to be
assigned to desks. When an office is constructed, people are assigned to the office from the front of this
master queue. When an office is demolished, the people who were assigned to that office should be added
to the end of the queue while they wait for a new office assignment. Here is the partial declaration of the
Office class:

class Office {

public:

Office(const string& name, int num_desks, queue<string> &unassigned);

friend ostream& operator<<(ostream &ostr, const Office &office);

private:

// representation

string _name;

int _num_desks;

string* _desks;

queue<string>& _unassigned; // a reference to the master queue

};

In the example below we create the master queue of people who need to be assigned to desks in offices,
and create and delete several Office objects:

queue<string> unassigned;

unassigned.push("Alice");

unassigned.push("Bob");

unassigned.push("Cathy");

unassigned.push("Dan");

unassigned.push("Erin");

unassigned.push("Fred");

unassigned.push("Ginny");

Office *red = new Office("red", 4, unassigned);

Office *green = new Office("green", 2, unassigned);

cout << *red << *green;

delete red;

cout << "After deleting the red office, "

<< unassigned.size() << " people are waiting for desks." << endl;

Office *blue = new Office("blue", 3, unassigned);

cout << *blue;

cout << "Before deleting the blue & green offices, "

<< unassigned.size() << " people are waiting for desks." << endl;

delete green;

delete blue;

cout << "After deleting all of the offices, "

<< unassigned.size() << " people are waiting for desks." << endl;

17

Here is the desired output from this example:

The red office has 4 desks:

desk[0] = Alice

desk[1] = Bob

desk[2] = Cathy

desk[3] = Dan

The green office has 2 desks:

desk[0] = Erin

desk[1] = Fred

After deleting the red office, 5 people are waiting for desks.

The blue office has 3 desks:

desk[0] = Ginny

desk[1] = Alice

desk[2] = Bob

Before deleting the blue & green offices, 2 people are waiting for desks.

After deleting all of the offices, 7 people are waiting for desks.

Here is the implementation of the constructor, as it appears in the office.cpp file:

Office::Office(const string& name, int num_desks, queue<string> &unassigned)

: _name(name), _num_desks(num_desks), _unassigned(unassigned) {

_desks = new string[_num_desks]; // allocate the desk space

for (int i = 0; i < _num_desks; i++) {

if (_unassigned.size() > 0) { // assign from the master queue

_desks[i] = _unassigned.front();

_unassigned.pop();

} else { // if there are no unassigned people, leave the desk empty

_desks[i] = "";

}

}

}

11.1 Classes and Memory Allocation [/10]

Anytime you write a new class, especially those with dynamically allocated memory, it is very important
to consider the member functions that the compiler will automatically generate and determine if this
default behavior is appropriate. List these 4 important functions by their generic names, AND write their
prototypes as they would appear within the Office class declaration.

18

11.2 Declaring a Destructor [/3]

The Office class is incomplete and requires implementation of a custom destructor so that people assigned
to demolished offices are returned to the master queue and memory is deallocated as appropriate to avoid
memory leaks. What line needs to be added to the header file to declare the destructor? Be precise with
syntax. Where should this line be added: within the public, protected, or private interface?

11.3 Implementing a Destructor [/12]

Implement the destructor, as it would appear in the office.cpp file.

19

11.4 Operator Overloading [/6]

Here is the implementation of the << stream operator as it appears within the office.cpp file:

ostream& operator<<(ostream &ostr, const Office &o) {

ostr << "The " << o._name << " office has "

<< o._num_desks << " desks:" << endl;

for (int i = 0; i < o._num_desks; i++) {

ostr << " desk[" << i << "] = " << o._desks[i] << endl;

}

return ostr;

}

There are three different ways to overload an operator: as a non-member function, as a member function,
and as a friend function. Which method was selected for the Office object << stream operator? What are
the reasons for this choice? Discuss why the other two methods are inappropriate or undesirable. Write 3
or 4 concise and thoughtful sentences.

20

12 Dynamically-Allocated Arrays [/17]

Write a function that takes an STL list of integers, finds the even numbers, and places them in a
dynamically-allocated array. Only the space needed for the even numbers should be allocated, and no
containers other than the given list and the newly-created array may be used. As an example, given a list
containing the values:

3 10 -1 5 6 9 13 14

the function should allocate an array of size 3 and store the values 10, 6 and 14 in it. It should return, via
arguments, both the pointer to the start of the array and the number of values stored. No subscripting
may be used — not even *(a+i) in place of a[i]. Here is the function prototype:

void even_array(const list<int>& b, int* & a, int& n);

21

13 Ternary Tree Recursion [/17]

A ternary tree is similar to a binary tree except that each node has at most 3 children. Write a recursive
function named EqualsChildrenSum that takes one argument, a pointer to the root of a ternary tree,
and returns true if the value at each non-leaf node is the sum of the values of all of its children and false
otherwise. In the examples below, the tree on the left will return true and the tree on the right will return
false.

class Node {

public:

int value;

Node* left;

Node* middle;

Node* right;

};

10

5 4

9−10732

4 −3 9

−1 5 −5

4 2

−3

1

5

22

14 Priority Queues [/16]

template <class T> class priority_queue {

public:

// CONSTRUCTOR

priority_queue() {}

// ACCESSORS

int size() { return m_heap.size(); }

bool empty() { return m_heap.empty(); }

const T& top() const { assert(!m_heap.empty()); return m_heap[0]; }

// MODIFIERS

void push(const T& entry) {

m_heap.push_back(entry);

this->percolate_up(int(m_heap.size()-1));

}

void pop() { // find and remove the element with the smallest value

assert(!m_heap.empty());

m_heap[0] = m_heap.back();

m_heap.pop_back();

this->percolate_down(0);

}

void pop_max() { }

private:

// HELPER FUNCTIONS

void percolate_up(int i) {

T value = m_heap[i];

while (i > 0) {

int parent = (i-1)/2;

if (value >= m_heap[parent]) break; // done

m_heap[i] = m_heap[parent];

i = parent;

}

m_heap[i] = value;

}

void percolate_down(int i) {

T value = m_heap[i];

int last_non_leaf = int(m_heap.size()-1)/2;

while (i <= last_non_leaf) {

int child = 2*i+1, rchild = 2*i+2;

if (rchild < m_heap.size() && m_heap[child] > m_heap[rchild])

child = rchild;

if (m_heap[child] >= value) break; // found right location

m_heap[i] = m_heap[child];

i = child;

}

m_heap[i] = value;

}

// REPRESENTATION

vector<T> m_heap;

};

23

14.1 Implementing pop max [/12]

Write the new priority queue member function named pop_max that finds and removes from the queue the
element with the largest value. Carefully think about the efficiency of your implementation. Remember
that a standard priority queue stores the smallest value element at the root.

14.2 Analysis [/4]

If there are n elements in the priority queue, how many elements are visited by the pop_max function in
the worst case? What is the order notation for the running time of this function?

24

15 Inheritance & Polymorphism [/10]

What is the output of the following program?

class A {

public:

virtual void f() { cout << "A::f\n"; }

void g() { cout << "A::g\n"; }

};

class B : public A {

public:

void g() { cout << "B::g\n"; }

};

class C : public B {

public:

void f() { cout << "C::f\n"; }

void g() { cout << "C::g\n"; }

};

int main() {

A* a[3];

a[0] = new A();

a[1] = new B();

a[2] = new C();

for (int i = 0; i < 3; i++) {

cout << i << endl;

a[i]->f();

B* b = dynamic_cast<B*>(a[i]);

if (b) b->g();

}

}

25

16 Types & Values [/15]

For the last expression in each fragment of code below, give the type (int, vector<double>, Foo*, etc.)
and the value. If the value is a legal address in memory, write “memory address”. If the value hasn’t been
properly initialized, write “uninitialized”. If there is an error in the code, write “error”. You may
want to draw a picture to help you answer each question, but credit will only be given for what you’ve
written in the boxes.

double a = 5.2;

double b = 7.5;

a+b

Type: Value:

int *d;

int e[7] = { 15, 6, -7, 19, -1, 3, 22 };

d = e + e[5];

*d

Type: Value:

bool *f = new bool;

*f = false;

f

Type: Value:

int g = 10;

int *h = new int[g];

h[0]

Type: Value:

map<string, int> m;

m.insert(make_pair(string("bob"),5551111));

m.insert(make_pair(string("dave"),5552222));

m.insert(make_pair(string("alice"),5553333));

m.insert(make_pair(string("chris"),5554444));

(++m.find("bob"))->second

Type: Value:

26

	 Short Answer [/17]
	Comparing Vectors & Arrays [/5]
	Limited Looping [/3]

	Superhero Division [/14]
	Implementation Choices [/5]
	/= operator implementation [/9]

	 Valet Parking Maps [/38]
	The Car class [/6]
	Data structure diagram [/10]
	print_cars [/9]
	remove_cars [/13]

	 Computational Desert Island [/]
	 Operations on Lists [/]
	 Reversing a dslist [/]
	 Sublists [/]
	 Splicing into a cs2list[/]

	 Concurrency and Asynchronous Computing [/3]
	 Garbage Collection [/12]
	Student Registration System [/3]
	Playing Chess [/3]
	Webserver [/3]
	Hand Held Game (e.g., GameBoy or PSP, etc.) [/3]

	 Short Answer [/22]
	 Garbage Identification [/7]
	 Stop and Copy Garbage Collection [/4]
	 Concurrency and Asynchronous Computing [/4]

	Data Structures [/18]
	 Order Notation [/16]
	 Office Demolition [/31]
	Classes and Memory Allocation [/10]
	Declaring a Destructor [/3]
	Implementing a Destructor [/12]
	 Operator Overloading [/6]

	 Dynamically-Allocated Arrays [/17]
	 Ternary Tree Recursion [/17]
	 Priority Queues [/16]
	 Implementing pop_max [/12]
	 Analysis [/4]

	 Inheritance & Polymorphism [/10]
	 Types & Values [/15]

