CSCI 2400 – Models of Computation, Section 3

Homework 4

Return by: Thursday, October 12

1. Use the pumping lemma to prove that the following languages are not regular. (The alhabet is $\Sigma = \{a, b\}$.)

- (a) $L = \{a^n b^l a^k : k \ge n+l\}$
- (b) $L = \{ww : w \in \Sigma^*\}$
- (c) $L = \{a^{k^2}\}$
- (d) $L = \{uww^Rv : u, v, w \in \Sigma^+, |u| \ge |v|\}$

2. Which of the following languages are regular? Give short explanations. (The alphabet is $\Sigma = \{a, b\}$.)

- (a) $L = \{ w : n_a(w) \neq n_b(w) \}$
- (b) $L = \{a^n b^l : n \ge 100, l \le 100\}$
- (c) $L = \{uww^Rv : u, v, w \in \Sigma^+\}$
- (d) $L = \{b^n a^l b^k : n > 5, l > 3, l \ge k\}$

3. Find context-free grammars for the following languages. Explain your answers.

- (a) $L = \{w : w \text{ starts and ends with the same symbol, and } w \in \{a, b\}^*\}$
- (b) The complement of the language $L = \{a^n b^n\}$.
- (c) $L = \{w : n_a(w) = 2n_b(w), \text{ where } w \in \{a, b\}^*\}$
- (d) $L = \{w \# x : w^R \text{ is a substring of } x, \text{ where } w, x \in \{a, b\}^*\}$

4. You are given the following ambiguous context-free grammar:

$$\begin{array}{rrrr} S & \rightarrow & AB | aaB \\ A & \rightarrow & a | Aa \\ B & \rightarrow & b \end{array}$$

(a) Find a string s generated by the grammar that has two leftmost derivations. Show the derivations.

- (b) Show the two derivation trees for the string s.
- (c) Find an equivalent unambiguous context-free grammar. Explain your answer.
- (d) Give the unique leftmost derivation and derivation tree for the string s generated from the unambiguous grammar of part (c).