Homework 4

Return by: Thursday, October 12

1. Use the pumping lemma to prove that the following languages are not regular. (The alhabet is $\Sigma=\{a, b\}$.)
(a) $L=\left\{a^{n} b^{l} a^{k}: k \geq n+l\right\}$
(b) $L=\left\{w w: w \in \Sigma^{*}\right\}$
(c) $L=\left\{a^{k^{2}}\right\}$
(d) $L=\left\{u w w^{R} v: u, v, w \in \Sigma^{+},|u| \geq|v|\right\}$
2. Which of the following languages are regular? Give short explanations. (The alphabet is $\Sigma=\{a, b\}$.)
(a) $L=\left\{w: n_{a}(w) \neq n_{b}(w)\right\}$
(b) $L=\left\{a^{n} b^{l}: n \geq 100, l \leq 100\right\}$
(c) $L=\left\{u w w^{R} v: u, v, w \in \Sigma^{+}\right\}$
(d) $L=\left\{b^{n} a^{l} b^{k}: n>5, l>3, l \geq k\right\}$
3. Find context-free grammars for the following languages. Explain your answers.
(a) $L=\left\{w: w\right.$ starts and ends with the same symbol, and $\left.w \in\{a, b\}^{*}\right\}$
(b) The complement of the language $L=\left\{a^{n} b^{n}\right\}$.
(c) $L=\left\{w: n_{a}(w)=2 n_{b}(w)\right.$, where $\left.w \in\{a, b\}^{*}\right\}$
(d) $L=\left\{w \# x: w^{R}\right.$ is a substring of x , where $\left.w, x \in\{a, b\}^{*}\right\}$
4. You are given the following ambiguous context-free grammar:

$$
\begin{aligned}
& S \rightarrow A B \mid a a B \\
& A \rightarrow a \mid A a \\
& B \rightarrow b
\end{aligned}
$$

(a) Find a string s generated by the grammar that has two leftmost derivations. Show the derivations.
(b) Show the two derivation trees for the string s.
(c) Find an equivalent unambiguous context-free grammar. Explain your answer.
(d) Give the unique leftmost derivation and derivation tree for the string s generated from the unambiguous grammar of part (c).

