Homework 8

Return by: Thursday, November 30

1. Consider the traveling salesperson problem:

We have a map with n cities $c_{1}, c_{2}, \ldots, c_{n}$. For every pair of cities c_{i}, c_{j} there is a road that connects the two cities and this road has length $d_{i j}$. The various road lengths may be different. The problem is to find the shortest route, starting from city c_{1}, that goes through all the cities, and returns back to city c_{1}. This is the route that the salesperson will follow.
(a) Describe an algorithm for a nondeterministic Turing machine that finds the shortest route in polynonial number of time steps (with respect to n). (Each time step corresponds to a transition of the machine.)
(b) Describe an algorithm for a deterministic Turing machine that finds the shortest route. Is the time of your algorithm polynomial?
2. (a) Give the algorithm of a Turing Machine that enumerates the strings of the following language in proper order.

$$
L=\left\{a^{n} b^{n}: n \geq 1\right\}
$$

(b) For this language, is the proper order the same with the alphabetical order? Explain your answer.
3. (a) Prove that the union of two countable sets is a countable set.
(b) Use the result of (a) to prove that the set of non recursively enumerable languages is not countable.
4. Show that if a language is not recursively enumerable then its complement cannot be recursive.
5. Suppose that language L is such that there is a Turing machine that enumerates the elements of L in proper order. Show that this means that L is recursive.

