Solutions to the Practice Midterm Exam

1.

2. $1(1+0)^{*} 11(1+0)^{*}+11(1+0)^{*}$
3. Let's assume for contradiction that L is a regular language. We apply the pumping lemma to L. Let m be the parameter of the pumping lemma. We choose to pump the string $a^{m} b^{5} c^{m}$ which is in the language L. Since $x y z=$ $a^{m} b^{5} c^{m}$ and $|x y| \leq m$ we have that the string y is a substring of the first a^{m}. Therefore, the string y has the form $y=a^{p}$, for some integer $p, 1 \leq p \leq m$ (since $|y| \geq 1$). Now, we pump up y once and we obtain the string $a^{\bar{m}+p} b^{\overline{5}} c^{m}$. By the pumping lemma, we have that $a^{m+p} b^{5} c^{m}$ is in the language L. However, $a^{m+p} b^{5} c^{m}$ is not in the language L since $m+p \neq m$. Therefore, we have a contradiction, and thus the language L is not be regular.
4.

The initial stack symbol is $\$$. State q_{0} reads the a 's and pushes them into the stack. State q_{1} reads the b 's and pops an a from the stack for each input
b. Finally, state q_{3} is the accept state which the automaton enters only if there is an a in the stack, which means that the numbers of a 's was more than the number of b 's.
5.
(a)

$$
\begin{aligned}
& S \rightarrow a S a|b S b| A \\
& A \rightarrow a A b \mid \lambda
\end{aligned}
$$

(b)

$$
S \Rightarrow a S a \Rightarrow a b S b a \Rightarrow a b A b a \Rightarrow a b a A b b a \Rightarrow a b a a A b b b a \Rightarrow a b a a b b b a
$$

6. Yes, the grammar is ambiguous. The reason is that there is string generated by the grammar that has two different derivation trees. This string is bbaa. The two derivation trees are:

7.

$$
\begin{aligned}
& S \rightarrow A V_{1} \\
& V_{1} \rightarrow T_{b} V_{2} \\
& V_{2} \rightarrow B T_{a} \\
& A \rightarrow A V_{3} \\
& V_{3} \rightarrow B T_{a} \\
& A \rightarrow a \\
& B \rightarrow B V_{4} \\
& V_{4} \rightarrow T_{a} A \\
& B \rightarrow b \\
& T_{a} \rightarrow a \\
& T_{b} \rightarrow b
\end{aligned}
$$

