Solutions to the Practice Midterm Exam

1.

- **2.** $1(1+0)^*11(1+0)^* + 11(1+0)^*$
- 3. Let's assume for contradiction that L is a regular language. We apply the pumping lemma to L. Let m be the parameter of the pumping lemma. We choose to pump the string $a^mb^5c^m$ which is in the language L. Since $xyz=a^mb^5c^m$ and $|xy|\leq m$ we have that the string y is a substring of the first a^m . Therefore, the string y has the form $y=a^p$, for some integer $p, 1\leq p\leq m$ (since $|y|\geq 1$). Now, we pump up y once and we obtain the string $a^{m+p}b^5c^m$. By the pumping lemma, we have that $a^{m+p}b^5c^m$ is in the language L. However, $a^{m+p}b^5c^m$ is not in the language L since $m+p\neq m$. Therefore, we have a contradiction, and thus the language L is not be regular.

4.

The initial stack symbol is \$. State q_0 reads the a's and pushes them into the stack. State q_1 reads the b's and pops an a from the stack for each input

b. Finally, state q_3 is the accept state which the automaton enters only if there is an a in the stack, which means that the numbers of a's was more than the number of b's.

$$S \to aSa|bSb|A$$
$$A \to aAb|\lambda$$

(b)

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abAba \Rightarrow abaAbba \Rightarrow abaaAbbba \Rightarrow abaabbba$

6. Yes, the grammar is ambiguous. The reason is that there is string generated by the grammar that has two different derivation trees. This string is bbaa. The two derivation trees are:

7.

$$S \rightarrow AV_1$$

$$V_1 \rightarrow T_bV_2$$

$$V_2 \rightarrow BT_a$$

$$A \rightarrow AV_3$$

$$V_3 \rightarrow BT_a$$

$$A \rightarrow a$$

$$B \rightarrow BV_4$$

$$V_4 \rightarrow T_aA$$

$$B \rightarrow b$$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$