Solutions to Homework 1

Problem 1.

We prove the claim by induction on the height n.

- Basis Case. For $n=0$ the tree consists only from one node. Therefore, the number of nodes in the tree is

$$
2^{n+1}-1=2^{0+1}-1=2-1=1
$$

as needed.

- Inductive Hypothesis. Let's assume that for any binary tree with height up to n, where $n \geq 0$, the number of nodes in the tree is at most $2^{n+1}-1$.
- Inductive Step. We will prove that the claim holds for any binary tree of height $n+1$. Namely, we will prove that the number of nodes in the tree is at most $2^{(n+1)+1}-1$.
Any binary tree of height $n+1$ can be decomposed into two subtrees each of height n and a root node as shown in Figure 1. Since each subtree has height n, we can apply the inductive hypothesis to each subtree and the number of nodes in a subtree is at most $2^{n+1}-1$. Summing the nodes from the two subtrees and the root node we have that the total number of nodes is at most

$$
2 \cdot\left(2^{n+1}-1\right)+1=2^{n+2}-2+1=2^{(n+1)+1}-1
$$

as needed.

Problem 2.

We prove the claim by induction on n.

- Basis Case. For $n=4$ we have $n!=1 \cdot 2 \cdot 3 \cdot 4=24$, and $2^{4}=16$, and thus $2^{4}<n$!, as needed.
- Inductive Hypothesis. Let's assume that the claim holds for any integer up to n, where $n \geq 4$. Namely it holds that $2^{n}<n$!.
- Inductive Step. We will prove that the claim holds for integer $n+1$ (where $n \geq 4$). Namely, we will prove that $2^{n+1}<(n+1)$!.
We can write $2^{n+1}=2 \cdot 2^{n}$. By the inductive hypothesis we have that $2^{n}<n$!. Subsequently, $2 \cdot 2^{n}<2 \cdot n$!. Since $2<n$ we obtain $2 \cdot 2^{n}<n \cdot n$!. By the definition of the factorial operation we have that $(n+1)!=(n+1) \cdot n!>$ $n \cdot n!$. Therefore, $2 \cdot 2^{n}<(n+1)$!, which implies that $2^{n+1}<(n+1)$!, as needed.

Problem 3.

We are given that for any symbol a, it holds

$$
\begin{equation*}
a^{R}=a \tag{1}
\end{equation*}
$$

and for any string u and symbol a, it holds

$$
\begin{equation*}
(u a)^{R}=a u^{R} \tag{2}
\end{equation*}
$$

We want to prove that for any strings u and v it holds that

$$
(u v)^{R}=v^{R} u^{R}
$$

We will prove the claim by induction on $|v|$, the length of the string v.

- Basis Case. We have $|v|=1$, and thus v is only one symbol e.g. $v=a$. Threfore, $(u v)^{R}=(u a)^{R}$. By Equation 2, we have $(u a)^{R}=a u^{R}$, and by Equation 1, we have $a u^{R}=a^{R} u^{R}$. Since $a^{R}=v^{R}$, we obtain

$$
(u v)^{R}=(u a)^{R}=a^{R} u^{R}=v^{R} u^{R}
$$

as needed.

- Inductive Hypothesis. Let's assume that the claim holds for any string v of length at most n, (in other words, $|v| \leq n$). Namely, for any such string it holds

$$
(u v)^{R}=v^{R} u^{R} .
$$

- Inductive Step. We will prove the claim for any string v of length equal to $n+1$ (in other words, $|v|=n+1$). Namely, we will prove that

$$
(u v)^{R}=v^{R} u^{R}
$$

Since $|v|=n+1$, we can write v as the concatenation of one string, e.g. w, and a symbol, e.g. a, so that $v=w a$, where the string w has length $|w|=n$. We have now, that

$$
\begin{aligned}
(u v)^{R} & =(u w a)^{R} \\
& =a^{R}\left(u w^{R}\right)
\end{aligned}
$$

(By Equation 2 applied on $u w$ and a)
$=a(u w)^{R}$.
(By Equation 1)
Since the length of w is n, we can apply the inductive hypothesis for the string w and we obtain

$$
(u w)^{R}=w^{R} u^{R}
$$

Subsequently,

$$
\begin{aligned}
(u v)^{R} & =a(u w)^{R} \\
& =a w^{R} u^{R}
\end{aligned}
$$

(By the inductive hypothesis on w)
$=(w a)^{R} u^{R}$
(By Equation 2 applied on w and a)
$=(v)^{R} u^{R}$
$=v^{R} u^{R}$,
as needed.

Problem 4.

We prove the two parts of the problem.

- First we show that if $w \in L_{1}\left(L_{2} \cap L_{3}\right)$ then $w \in L_{1} L_{2} \cap L_{1} L_{3}$.

Since $w \in L_{1}\left(L_{2} \cap L_{3}\right)$, there must be two strings u and v, such that $u \in L_{1}$ and $v \in L_{2} \cap L_{3}$, so that w can be written as the concatentation of u and v, namely $w=u v$.
Since $v \in L_{2} \cap L_{3}$, it must be that $v \in L_{2}$ and $v \in L_{3}$. Furthermore, since $u \in L_{1}$, we get that $u v \in L_{1} L_{2}$ and $u v \in L_{1} L_{3}$. Subsequently, $u v \in L_{1} L_{2} \cap L_{1} L_{3}$, and thus, $w \in L_{1} L_{2} \cap L_{1} L_{3}$, as needed.

- We want to find languages L_{1}, L_{2}, L_{3}, for which there is a w such that if $w \in L_{1} L_{2} \cap L_{1} L_{3}$ then $w \notin L_{1}\left(L_{2} \cap L_{3}\right)$.

Take

$$
\begin{aligned}
L_{1} & =\{a, a b\} \\
L_{2} & =\{\lambda\} \\
L_{3} & =\{b\} .
\end{aligned}
$$

We get,

$$
\begin{aligned}
L_{1} L_{2} & =\{a, a b\}\{\lambda\}=\{a, a b\} \\
L_{1} L_{3} & =\{a, a b\}\{b\}=\{a b, a b b\}
\end{aligned}
$$

Subsequenlty,

$$
L_{1} L_{2} \cap L_{1} L_{3}=\{a, a b\} \cap\{a b, a b b\}=\{a b\} .
$$

Moreover,

$$
L_{2} \cap L_{3}=\{\lambda\} \cap\{b\}=\emptyset
$$

and thus

$$
L_{1}\left(L_{2} \cap L_{3}\right)=\{a, a b\} \emptyset=\emptyset .
$$

Take now

$$
w=a b .
$$

We have

$$
a b \in L_{1} L_{2} \cap L_{1} L_{3}=\{a b\}
$$

and

$$
a b \notin L_{1}\left(L_{2} \cap L_{3}\right)=\emptyset,
$$

as needed.
Problem 5.
See Figures 2, 3, 4, and 5.

Figure 1: Decomposition of a binary tree to two subtrees.

Figure 2: Part (a)

Figure 3: Part (b)
α,

Figure 4: Part (c)

Figure 5: Part (d)

