
CSCI 2400 { Models of Computation, Section 3

Solutions to Homework 8

Problem 1.
(a) We will use the abbreviation TSP for Traveling Salesperson Problem. We
will denote any path which starts from city c1, then goes through all the cities,
and returns back to c1 as a TSP-path. The optimal TSP-path has the shortest
length.

Denote by A� the length of the optimal TSP-path. The value A� is not
known at the beginning, and we will �nd it with a binary search procedure. At
the same time we will �nd the optimal TSP-path.

For our non-deterministic algorithm, we need the following two routines. The
routine Smaller-TSP-path(B) returns \yes" is there exists a TSP-path with
length smaller than B, where B is a parameter, and returns \no" otherwise.

Smaller-TSP-path(B):

1. Guess a TSP-path p.

2. Check if p has length smaller than B.

If yes then return \yes". Otherwise, return \no".

Notice that the above routine is non-deterministic. If there exists a TSP-
path p with length smaller than B then we are guaranteed that this routine will
return the answer \yes", since there is a possible computation in step 1 of the
routine that gives path p.

In a similar way we de�ne the routine Exact-TSP-path(B), which returns a
TSP-path p with length B if such a path exists, and otherwise it returns \no".

Exact-TSP-path(B):

1. Guess a TSP-path p.

2. Check if p has length equal to B.

If yes then return the TSP-path p. Otherwise, return \no".

Now we are ready to give the main algorithm. Let's assume that the total
sum of all the route distances

P
i;j di;j is smaller than 2n. With this assumption,

the length of the optimal TSP-path is smaller than 2n+1.

Find-optimal-TSP-path:

1. Set A = 2n and D = 2n�1.

2. Execute Smaller-TSP-path(A).

If the answer is \yes" then set A = A�D.

1

If the answer is \no" then execute Exact-TSP-path(A). If the result is a
path p then return the path p. Otherwise, set A = A+D.

3. Set D = D=2.

4. Go to step 2.

The above algorithm returns the optimal TSP-path. This algorithm is a
binary search procedure where we try to �nd the value of A�. The value of
variable A holds the approximation of A�. Every time we compute step 2, A is
closer to the value of A� by the amount of D. After n repetitions the value of
variable A is equal to the value of A�, and at that point the path computed by
Exact-TSP-path(A) is the optimal TSP-path.

Let's examine now the time needed for the above algorithm. Each execution
of routines Smaller-TSP-path(B) and Exact-TSP-path(B) takes time at most
O(n), since guessing the TSP-path p takes time O(n) (there are n� 1 cities to
guess), and comparing the length of p with B takes time O(n). The steps 2-4
in routine Find-optimal-TSP-path are repeated n times (namely, log(2n) =
n). At each repetition we execute the routines Smaller-TSP-path(A) and
Exact-TSP-path(A) which take time O(n). Therefore, the total time is n �

O(n) = O(n2). This time is polynomial in n.

(b) In the deterministic algorithm we search all the TSP-paths. A TSP-path
path is a sequence of cities that starts and ends at city c1. All the possible paths
are all the possible permutations of the cities c2; : : : ; cn (the intermediate cities
in a TSP-path). There are (n � 1)! such permutations and therefore (n � 1)!
TSP-paths.

The following routine returns the �rst permutation:

First-Permutation:

1. Return the sequence c2; c3; : : : ; cn

The following routine returns the next permutation, given a permutation P .
This routine is recursive.

Next-Permutation(P):

1. In the permutation P �nd the position i of city cn. Let P
0 be the subse-

quence right from city cn

2. If P 0 is the �nal permutation (P 0 = cn�1cn�2 : : : ci) then swap cn with
the city on its left. (If cn is leftmost then P is the �nal permutation and
simply return).

Otherwise, �nd the next permutation of P 0 (using Next-Permutation)
with i the smallest city index and n � 1 the largest city index. Store the
result to P 00.

2

3. Replace P 0 with P 00. Return the new permutation.

Now we are ready to give the deterministic routine that �nds the optimal
TSP-path. We search all the possible TSP-paths. We keep in variable q the
shortest TSP-path found so far. At the end, q will hold the optimal TSP-path.

Find-optimal-TSP-path:

1. Execute First-Permutation and store the result in P . From P create
the respective TSP-path p (add c1 at the beginning and end of P). Set
q = p.

2. Execute Next-Permutation(P) and store the result to P . Create from P
the respective TSP-path p.

3. Compare the length of p with the length of q. If the length of p is smaller
then set q = p.

4. Compare P to the �nal permutation cn; cn�1; : : : ; c2. If P is the same with
the �nal permutation then return q. Else goto step 2.

Let's examine now the time needed for the algorithm. Each execution of
routines First-Permutation and Next-Permutation, takes time O(n). Steps
2,3, and 4 of routine Find-optimal-TSP-path are executed (n� 1)! times. At
each iteration the routine Next-Permutation is executed once. Therefore, the
total number of steps is O(n! � n) = O(n!). This time is exponential (From
Sterling's formula).

There is no known polynomial time algorithm that solves the TSP problem.

Problem 2.
(a) The proper order of strings of the form anbn is:

ab; aabb; aaabbb; aaaabbbb; : : :

(in proper order we �rst print strings with smaller length). Below is the algo-
rithm of the Turing machine that prints the strings in proper order. By \print"
we mean: write on the tape.

Procedure Enumerate:

1. Print ab.

2. Add an a to the left and a b to the right of the previously printed string.
Print the new string.

3. Go to step 2.

3

(b) No, for this language the proper order is di�erent than the lexicographic
order. In particular, the lexicographic order is the opposite of the proper order.
For example, in the lexicographic order the string aabb appears before string ab.

Problem 3.
(a) Let's assume that we have two countable sets S1 and S2 (these sets may
be in�nite). We want to prove that the set S1 [S2 is also countable. In other
words, we want to �nd an enumeration procedure that prints the elements of
S1 [S2 in some order.

Since S1 is a countable set there is a Turing machine M1 that enumerates
the elements of S1. Similarly, there is a Turing machine M2 that enumerates
the elements of S2.

Using M1 and M2 we can construct a Turing machine M that enumerates
the elements of S1 [S2 as follows. Machine M interleaves the computations
of M1 and M2. Machine M �rst allows machine M1 to print one element of
S1, then allows machine M2 to print one element of S2, and then the process is
repeated. Therefore, machine M prints the sequence

x1; y1; x2; y2; x3; y3; : : :

where xi are the elements of S1, and yi are the elements of S2.

(b) We want to prove that the set of non recursively enumerable languages is
uncountable.

Let S be the set of all languages over an alphabet. We know that the set S
of all languages is uncountable (see Theorem 11.2, page 289). The set S is the
union of two sets S1 and S2:

� Set S1 consists from all the recursively enumerable languages (the lan-
guages accepted by Turing machines).

� Set S2 consists from all the non recursively enumerable languages (notice
that S2 = S1).

We want to prove that S2 is uncountable. We have S = S1 [S2. We know
that the set S1 is countable, since the set of Turing machines is countable (see
Theorem 10.3, page 280, and Theorem 11.2, page 289).

If S2 was countable then from part (a) of this problem we would have that
the set S is also countable (the union of two countable sets is countable). But
this is impossible, since set S is uncountable. Therefore, it must be that set S2
is uncountable.

Problem 4.
We want to prove that if a language L is not recursively enumerable then

its complement L cannot be recursive.
Assume for contradiction that the language L is recursive. Then according

to the de�nition of recursive languages (De�nition 11.2, page 286) there is a

4

Turing machine M that accepts L and this machine halts for every input string
w.

We will modify M , and we will construct a Turing machine M that accepts
L as follows. Let q be a halting state of M (we can easily identify the halting
states because they have no outgoing transitions). If q is a �nal state then we
make it a non-�nal state, and if q is a non-�nal state then make it a �nal state.
We do the same for all the halting states of M .

It is easy to see that if M halts in a �nal state then M halts in a non-�nal
state, and vice-versa. Therefore, if string w is accepted by M , then w is not
accepted by M , and vice-versa. Subsequently, machine M accepts language
L. Therefore, language L is recursively enumerable (more speci�cally, language
L is recursive). This is a contradiction, since language L is not recursively
enumerable. Thus, our original assumption that the language L is recursive
must be wrong, and therefore, language L is not recursive.

Problem 5.
Suppose that language L is such that there is a Turing machine M 0 that

enumerates the elements of L in proper order. We want to prove that L is
recursive. In other words, we want to construct a Turing machine M that
accepts L and halts for every input string w.

The construction of M uses the machine M 0. For input string w, machine
M does the following:

� M computes the length of w. Let n be the length of w.

� M uses M 0 to enumerate all strings with length up to n, and compares
each enumerated string with w:

{ If M �nds a string which is is the same with w then M halts in a
�nal state.

{ If M doesn't �nd any string the same with w then it halts in a non-
�nal state.

MachineM always halts for an input string w, since machineM 0 enumerates
the strings of L in proper order (M 0 prints �rst the strings of smaller length).
Furthermore, if w 2 L then machine M will halt in a �nal state. Therefore, L
is recursive.

5

