Mod Comp CSCI-2400

Solutions to Homework #6

(The solution is provided by your classmate Matt Leotta)

1. No, the requirement that a Turing machine must halt only in a final state does not restrict the power of the machine. Let’s call the modified kind of machines, which halt only on final states, as the “final-halt” machines. We need to prove that any language accepted by a standard Turing Machine is also accepted by a no-halt machine, and vice-versa.

(a) Any language accepted by a standard Turing machine is also accepted by a final-halt machine.

Proof by construction

We can convert any standard Turing machine into a final-halt machine using the following method:

1. Create a new “trap state” with transitions to itself for all inputs

2. For each undefined transition from a non-final state, define a transition to the trap state

For all instances where the standard machine previously halted in a non-final state, the final-halt machine now enters an infinite loop in a trap state. Therefore, all previous inputs which where not accepted are still not accepted because the machine loops forever. All input strings previously accepted are still accepted since transitions towards final states are not modified.

(b) Any language accepted by a final-halt machine is also accepted by a standard Turing Machine.

Trivially true, since any final-halt machine is also a standard Turing machine.

2. For any string w ({a, b, c}+, let wi denote the i-th symbol of w, namely, w = w|w| w|w|-1… w2 w1. Assign to letters a, b, and c the respective values 1, 2, and 3. The function f(w) that returns the index for all w ({a,b,c}+ in the proper ordering is:

f(w) = w|w|3|w|-1 + w|w|-13|w|-2 + …+ w2 3 + w1
 3. Let L1 be recursive and L2 recursively enumerable. Show that L2 – L1 is necessarily recursively enumerable.

Proof by construction:

There exists a Turing machine M1 that accepts L1 and halts on all inputs.

There exists a Turing machine M2 that accepts L2 and may not halt for all inputs.

We can construct a new Turing machine M3 from M1 and M2 that accepts L2 – L1.

M3 should accept all strings accepted by M2 but not accepted by M1.

Machine M3 first needs a new Turing machine to duplicate the input string on the tape.

Next M3 will run M2 and then M1 on the copy of the input with the following changes:

1.
Add transitions from all final states of M2 (and make them non-final states) to the starting state of M1 (moving the read-write head to the second copy of the input string in the process). Therefore, if a string is accepted by M2 it will be tested on M1.

2.
Convert all final states of M1 into non-final states. Furthermore, convert any other hatling states of M1 to final states. Therefore, if a string is accepted by M1 it is rejected in M3, and furthermore if a string is rejected by M1 it is accepted by M3.
M3 will run M2 and then M1.

[image: image1]
Since M3 contains M2 there are must be instances of w for which M3 does not halt (M2 doesn’t halt for these instances). Therefore, L2 – L1 is necessarily recursively enumerable. However, if L2 was recursive then M3 would always halt and L2 – L1 would be recursive as well.

 4. If there exists a Turing machine that enumerates the elements of L in proper order then it must be a recursive language.

Proof by construction:

By definition, L is recursive if and only if there exists a membership algorithm for it.

We will construct a Turing machine M that determines membership in language L,

namely, for any input string w, machine M determines if w is in L or not.

Let M1 be the Turing machine that enumerates the elements of L in proper order.

Machine M compares the input string w with each output from M1.

If string w equals an output from machine M1 then machine M returns “yes”.

If the length of an output string from M1 exceeds the length of w then M returns “no”.

This works because strings in proper order are in order of increasing length. Thus, if M1 reaches a point where it is producing strings with a length greater than that of w, we know that it will never produce w. This membership algorithm always produces an answer in finite time (always halts) so L must be recursive.

M3

Reject w

Accept w

w

Accept w

Reject w

Move head to the copy of w

Reject w

Copy w on tape

Accept w

M1

M2

