
1

More Regular Expressions

List/Scalar Context for m//

• Last week, we said that m// returns ‘true’ or
‘false’ in scalar context. (really, 1 or 0).

• In list context, returns list of all matches
enclosed in the capturing parentheses.
– $1, $2, $3, etc are still set

• If no capturing parenthesis, returns (1)
• If m// doesn’t match, returns ()

Modifiers

• following final delimiter, you can place one
or more special characters. Each one
modifies the regular expression and/or the
matching operator

• full list of modifiers on pages 150 (for m//)
and 153 (for s///)

2

/i Modifier

• /i ! case insensitive matching.
• Ordinarily, m/hello/ would not match

“Hello.”
– we saw this last week with the banana example

• However, this match *does* work:
– print “Yes!” if (“Hello” =~ m/hello/i);

• Works for both m// and s///

/s Modifier

• /s !Treat string as a single line
• Ordinarily, the . wildcard matches any

character *except* the newline
• If /s modifier provided, Perl will treat your

regexp as a single line, and therefore the .
wildcard will match \n characters as well.

• Also works for both m// and s///

/m Modifier

• /m ! Treat string as containing multiple
lines

• As we saw last week, ^ and $ match
“beginning of string” and “end of string”
only.

• if /m provided, ^ will also match right after
a \n, and $ will match right before a \n

• Yet again, works on both m// and s///

3

/o Modifier
• /o ! Compile pattern only once
• Ordinarily, a pattern containing a variable is

sent through variable interpolation engine
every time matching operation evaluated
– (unless delimiters are single quotes, of course)

• with /o modifier, variable is interpolated only
once

• if variable changes before next time pattern
match is done, Perl doesn’t notice (or care) – it
still evaluates original value of the variable

• Yes, both m// and s/// again

/x Modifier
• /x ! Allow formatting of pattern match
• Ordinarily, whitespace (tabs, newlines, spaces) inside of

a regular expression will match themselves.
• with /x, you can use whitespace to format the pattern

match to look better
• m/\w+:(\w+):\d{3}/;

– match a word, colon, word, colon, 3 digits

• m/\w+ : (\w+) : \d{3}/;
– match word, space, colon, space, word, space, colon, space, 3

digits
• m/\w+ : (\w+) : \d{3}/x;

– match a word, colon, word, colon, 3 digits

More /x Fun
• /x also allows you to place comments in your

regexp
• Comment extends from # to end of line, just as

normal
m/ #begin match

\w+ : #word, then colon

(\w+) #word, returned by $1

: \d{3} #colon, and 3 digits

/x #end match

• Do not put end-delimiter in your comment
• yes, works on m// and s/// (last one, I promise)

4

/g Modifier (for m//)
• List context:
• return list of all matches within string, rather than

just ‘true’
– if capturing parentheses, return all occurrences of those

sub-matches
– if not, return all occurrences of entire match

$nums = “1-518-276-6505”;

@nums = $nums =~ m/\d+/g;
@nums ! (1, 518, 276, 6505)

$string = “ABC123 DEF GHI789”;

@foo = $string =~ /([A-Z]+)\d+/g;
@foo ! (ABC, GHI)

More m//g
• Scalar context:
• initiate a ‘progressive’ match
• Perl will remember where your last match on this

variable left off, and continue from there
$s = “abc def ghi”;

for (1..3){

print “$1” if $s =~ /(\w+)/;

} #prints abcabcabc

for (1..3){

print “$1” if $s =~ /(\w+)/g;

} #prints abcdefghi

/c Modifier (for m//)
• Used only in conjunction with /g
• /c ! continue progressive match
• When m//g finally fails, if /c used, don’t reset

position pointer
$s = “Billy Bob Daisy”;

while ($s =~ /(B\w+)/g){ print “$1 ”; }
#prints Billy Bob
print $1 if ($s =~ /(\w+i\w+)/g);#prints Billy

while ($s =~ /(B\w+)/gc){ print “$1 ”; }
#prints Billy Bob
print $1 if ($s =~ /(\w+i\w+)/g);#prints Daisy

5

/g Modifier (for s///)

• /g ! global replacement
• Ordinarily, only replaces first instance of

PATTERN with REPLACEMENT
• with /g, replace all instances at once.
$a = ‘$a / has / many / slashes /’;

$a =~ s#/#\\#g;

• $a now ! ‘$a \ has \ many \ slashes \’

Return Value of s///

• Regardless of context, s/// always returns the
number of times it successfully search-and-
replaced

• If search fails, didn’t succeed at all, so returns
0, which is equivalent to false

• unless s///g modifier is used, will always return
0 or 1.

• with /g, returns total number of global search-
and-replaces it did

/e Modifier

• /e ! Evaluate Perl code in replacement
• Looks at REPLACEMENT string and evaluates it as

perl code first, then does the substitution
s/

hello

/

“Good ”.($time<12?“Morning”:“Evening”)

/xe

6

A Bit More on Clustering

• So far, we know that after a pattern match, $1, $2,
etc contain sub-matches.

• What if we want to use the sub-matches while still
in the pattern match?

• If in replacement part of s///, no problem – go ahead
and use them:

• s/(\w+) (\w+)/$2 $1/; # swap two words

• if still in match, however….

Clustering Within Pattern

• to find another copy of something you’ve already
matched, cannot use $1, $2, etc…
– operation passed to variable interpolation *first*, then to

regexp parser
• instead, use \1, \2, \3, etc…
• m/(\w+) \1/; #find duplicate words

Transliteration Operator
• tr/// ! does not use regular expressions.

– Probably shouldn’t be in RegExp section of book
– Authors couldn’t find a better place for it.

• Neither can I

• tr/// *does*, however, use binding operators =~
and !~

• formally:
• tr/SEARCHLIST/REPLACEMENTLIST/;

– search for characters in SEARCHLIST, replace with
equivalent characters in REPLACEMENTLIST

7

What to Search, What to Replace?
• Much like character classes (from last week),

tr/// takes a list or range of characters.
• tr/a-z/A-Z/;

– replace any lowercase characters with equivalent
capital character.

• TAKE NOTE: SearchList and ReplacementList
are NOT REGULAR EXPRESSIONS
– attempting to use RegExps here will give you errors

• Also, no variable interpolation is done in either
list

tr/// Modifiers

• /c ! Compliment searchlist
– ‘real’ search list contains all characters *not* in

given searchlist
• /d ! Delete found but un-replaced characters

– tr/a-z/A-N/d; #replace a-n with A-N. Delete o-z.
• /s ! Squash duplicate replaced characters

– sequences of characters replaced by same character
are ‘squashed’ do single instance of character

tr/// Notes
• if Replacement list is shorter than Search list, final

character repeated until it’s long enough
– tr/a-z/A-N/;

– #replace a-m with A-M.

– #replace n-z with N

• if Replacement list is null, repeat Search list
– useful to count characters, or squash with /s

• if Search list shorter than Replacement list, ignore
‘extra’ characters is Replacement

• if no binding string given, tr/// operates on $_, just
like m// and s///

