
1

Regular Expressions

What are regular expressions?

• A means of searching, matching, and
replacing substrings within strings.

• Very powerful
• (Potentially) Very confusing
• Fundamental to Perl
• Something C/C++ can’t even begin to

accomplish correctly

Let’s get started…
• Matching:
• STRING =~ m/PATTERN/;

– Searches for PATTERN within STRING.
– If found, return true. If not, return false. (in scalar

context)
• Substituting/Replacing/Search-and-replace:
• STRING =~ s/PATTERN/REPLACEMENT/;

– Searches for PATTERN within STRING.
– If found, replace PATTERN with REPLACEMENT,

and return true. (in scalar context)
– If not, leave STRING as it was, and return false. (in

scalar context)

2

Matching
• *most* characters match themselves. They ‘behave’

(according to our text)
if ($string =~ m/foo/){

print “$string contains ‘foo’\n”;

}

• some characters ‘misbehave’. They affect how other
characters are treated:

• \ | () [{ ^ $ * + ? .
– To match any of these, precede them with a backslash:

if ($string =~ m/\+/){

print “$string contains a plus
sign\n”;

}

Substituting

• same rules apply
• $greeting =~ s/hello/goodbye/;
• $sentence =~ s/\?/\./;

Leaning Toothpicks

• that last example looks pretty bad.
• s/\?/\./;
• This can sometimes get even worse:

– s/\/foo\/bar\//\\foo\\bar\\/;
• This is known as “Leaning toothpick” syndrome.
• Perl has a way around this: instead of /, use any

non-alphanumeric, non-whitespace delimiters
• s#/foo/bar/#\\foo\\bar\\#;

3

No more toothpicks
• Any non-alphanumeric, non-whitespace

characters can be used as delimiters.
• If you choose brackets, braces, parens:

– close each part
– Can choose different delimiters for second part
– s(egg)<larva>;

• If you do use / (front slash), can omit the ‘m’
(but not the ‘s’)

• $string =~ /found/;

One more special delimiter
• If you choose ? as the delimiter:
• After match is successful, will not attempt to

perform the match again until reset
command is issued, or program terminates

• So, if $foo =~ ?hello? is in a loop,
program will not search $foo for hello any
time in the loop after it’s been found once

• This applies only to matching, not
substitution

Binding and ‘Negative’ Binding
• =~ is the ‘binding’ operator. Usually read

“matches” or “contains”.
– $foo =~ /hello/

– # “Dollar foo contains hello”
• !~ is the negative binding operator. Read

“Doesn’t match” or “doesn’t contain”
– $foo !~ /hello/

– # “Dollar foo doesn’t contain hello”
– equivalent of ! !($foo =~ /hello/)

4

No binding

• If no string is given to bind to (either via =~
or !~), the match or substitution is taken out
on $_

if (/foo/){

print “$_ contains the string
foo\n”;

}

Interpolation
• Variable interpolation is done inside the pattern

match/replace, just as in a double-quoted string
– UNLESS you choose single quotes for your delimiters

$foo1 = “hello”; $foo2 = “goodbye”;

$bar =~ s/$foo1/$foo2/;

#same as $bar =~ s/hello/goodbye/;

$a = “hi”; $b = “bye”;

$c =~ s’$a’$b’;

#this does NOT interpolate. Will
literally search for ‘$a’ in string $c
and replace with ‘$b’

Saving your matches
• parts of your matched substring can be

automatically saved for you.
• Group the part you want to save in parentheses
• matches saved in $1, $2, $3, …
if ($string =~ /(Name)=(Paul)/){

print “First match = $1, Second
match = $2\n”;

}

#prints " “First match = Name,
Second match = Paul”

5

Now we’re ready

• Up to this point, no real ‘regular expressions’
– pattern matching only

• Now we get to the heart of the beast
• recall 12 ‘misbehaving’ characters:

– \ | () [{ ^ $ * + ? .

• Each one has specific meaning inside of
regular expressions.
– We’ve already seen 3…

Alternation
• simply: “or”
• use the vertical bar: |

– similar (logically) to || operator
• $string =~ /(Paul|Justin)/

– search $string for “Paul” or for “Justin”
– return first one found in $1

• /Name=(Robert(o|a))/

– search $_ for “Name=Roberto” or “Name=Roberta”;
– return either Roberto or Roberta in $1
– (also returns either o or a in $2)

Capturing and Clustering

• We’ve already seen examples of this, but let’s
spell it out:

• Anything within the match enclosed in
parentheses are returned (‘captured’) in the
numerical variables $1, $2, $3

• Order is read left-to-right by *Opening*
parenthesis.
– /(($foo)=($name))/

– $1 = “$foo=$name”; $2 =“$foo”; $3=“$name”;

6

Clustering
• Parentheses are also used to ‘cluster’ parts

of the match together.
– similar to the function of parens in mathematics

• /prob|n|r|l|ate/
– matches “prob” or “n” or “r” or “l” or “ate”

• /pro(b|n|r|l)ate/
– matches “probate” or “pronate” or “prorate” or

“prolate”

Clustering without Capturing
• For whatever reason, you might not want to

‘capture’ the matches, only cluster something
together with parens.

• use (?:) instead of plain ()
• in previous example:
• /pro(?:b|n|r|l)ate/

– matches “probate” or “pronate” or “prorate” or
“prolate”

– this time, $1 does not get value of b, n, r, or l

Beginnings and Ends of strings
• ^ " matches the beginning of a string
• $ " matches the end of a string
• $string = “Hi, Bob. How’s it going?”
• $string2 = “Bob, how are you?\n”;
• $string =~ /^Bob/;

– returns false
• $string2 =~ /^Bob/;

– returns true
• $ matches ends in the same way.

7

Some meta-characters
• For complete list, see pg 161 of Prog. Perl
• \d " any digit: 0 – 9

– \D " any non-digit
• \w " any ‘word’ character: a-z, A-Z, 0-9, _

– \W " any ‘non-word’ character
• \s " any whitespace: space, \n, \t

– \S " any non-whitespace character
• \b " a word boundary

– this is “zero-length”. It’s simply “true” when at the
boundary of a word, but doesn’t match any actual
characters

– \B " true when not at a word boundary

The . Wildcard

• A single period matches “any character”.
– Except the new line

• usually.

• /filename\…./
– matches filename.txt, filename.doc,

filename.exe, etc etc

Quantifiers
• “How many” of previous characters to match
• * " 0 or more
• + " 1 or more
• ? " 0 or 1
• {N} " exactly N times
• {N, } " at least N times
• {N, M} " at least N times, no more than M

times

8

Greediness

• Quantifiers are ‘greedy’ by nature. They match
as much as they possibly can.

• They can be made non-greedy by adding a ? at
the end of the quantifier

• $string = “hello there!”
• $string =~ /e(.*)e/;

– $1 gets “llo ther”;
• $string =~ /e(.*?)e/;

– $1 gets “llo th”;

Character classes
• Use [] to match characters that have a certain

property
– Can be either a list of specific characters, or a range

• /[aeiou]/
– search $_ for a vowel

• /[a-nA-N]/
– search $_ for any characters in the 1st half of the

alphabet, in either case
• /[0-9a-fA-F]/

– search $_ for any ‘hex’ digit.

Character class catches
• use ^ at very beginning of your character class to

negate it
• /[^aeiou]/

– Search $_ for any non-vowel
– Careful! This matches consonants, numbers,

whitespace, and non-alpha-numerics too!
• . wildcard loses its specialness in a character class

– /[\w\s.]/
– Search $_ for a word character, a whitespace, or a dot

• to search for ‘]’ or ‘^’, make sure you backslash
them in a character class

9

TMI

• That’s (more than) enough for now.
• go over the material, play with it.
• next week, more information and trivialities

about regular expressions.
• Also, the transliteration operator.

– doesn’t use Reg Exps, but does use binding
operators. Go figure.

