Regular Expressions

What are regular expressions?

* A means of searching, matching, and
replacing substrings within strings.

* Very powerful

(Potentially) Very confusing

Fundamental to Perl

Something C/C++ can’t even begin to
accomplish correctly

Let’s get started...
Matching:
STRING =~ m/PATTERN/;
— Searchesfor PATTERN within STRING.

— If found, return true. If not, return false. (in scalar
context)

Substituting/Repl acing/Search-and-repl ace:
STRING =~ §PATTERN/REPLACEMENT/;
— Searchesfor PATTERN within STRING.

— If found, replace PATTERN with REPLACEMENT,
and return true. (in scalar context)

— If not, leave STRING asit was, and return false. (in
scalar context)

Matching
¢ *most* characters match themselves. They ‘behave
(according to our text)
if ($string =~ mfool){
print “$string contains ‘foo’ \n”;
}

¢ some characters ‘misbehave’. They affect how other
characters are treated:

LA G A A A T A
— To match any of these, precede them with a backslash:

if ($string =~ m\+/){
print “$string contains a plus
sign\n”;

}

Substituting

» samerules apply
* $greeting =~ ghello/goodbye/;
* $sentence =~ s\?/\./;

L eaning Toothpicks

that last example looks pretty bad.

s\?\J;

This can sometimes get even worse:

— s/VfooVbar\//\\foo\\bar\V;

Thisis known as “Leaning toothpick” syndrome.

Perl has away around this: instead of /, use any
non-al phanumeric, non-whitespace delimiters
st/fool/bar/#\\f oo\\bar\\#;

No more toothpicks

 Any non-a phanumeric, non-whitespace
characters can be used as delimiters.

If you choose brackets, braces, parens:

— close each part

— Can choose different delimiters for second part
—s(egg) <l arva>;

If youdouse/ (front slash), can omit the‘m

(but not the‘s’)
$string =~ /found/;

One more specia delimiter

If you choose ? as the delimiter:

After match is successful, will not attempt to
perform the match again until reset
command isissued, or program terminates
So, if $f oo =~ ?hel | 0? isinaloop,
program will not search $foo for hello any
timein the loop after it's been found once
This applies only to matching, not
substitution

Binding and ‘Negative' Binding
=~ isthe'binding’ operator. Usually read
“matches’ or “contains’.

—-$foo =~ /hello/

— #"“Dollar foo contains hello”

1~ isthe negative binding operator. Read
“Doesn’'t match” or “doesn’t contain”
—-$foo !~ /hello/

—#“Dollar foo doesn't contain hello”
—equivalentof 2! ($f oo =~ /hello/)

No binding

* If no string is given to bind to (either via=~
or 1~), the match or substitution is taken out

on$_

if (/fool){

print “$_ contains the string
foo\n”;

}

Interpolation

« Variableinterpolation is done inside the pattern
match/replace, just asin a double-quoted string
— UNLESS you choose single quotes for your delimiters
$fool = “hello”; $foo2 = “goodbye”;
$bar =~ s/ $fool/ $f 002/;

#same as $bar =~ s/ hell o/ goodbye/;
$a = “hi”; $b = “bye”;
$c =~ s’ $a’ $b’;

#this does NOT interpolate. WII
literally search for ‘$a in string $c
and replace with ‘' $b’

Saving your matches

« parts of your matched substring can be
automatically saved for you.

 Group the part you want to save in parentheses

» matches saved in $1, $2, $3, ...

if ($string =~ /(Name)=(Paul)/){
print “First match = $1, Second
match = $2\n";

}

#prints -> “First match = Nane,
Second match = Paul”

Now we' re ready

Up to this point, no real ‘regular expressions

— pattern matching only

» Now we get to the heart of the beast

« recall 12 ‘misbehaving’ characters:
NPy r{rsr+2.

» Each one has specific meaning inside of

regular expressions.

— We'vealready seen 3...

Alternation

e simply: “or”

» usethevertical bar: |
—aimilar (logicaly) to || operator

e $string =~ /(Paul | Justin)/
— search $string for “Paul” or for “Justin”
— return first one found in $1

» / Name=(Robert (o|a))/
—search $_for “Name=Roberto” or “Name=Roberta’;
— return either Roberto or Robertain $1
— (alsoreturns either o or ain $2)

Capturing and Clustering

* We've dready seen examples of this, but let’s
spell it out:

» Anything within the match enclosed in
parentheses are returned (‘ captured’) in the
numerical variables $1, $2, $3

* Order isread left-to-right by * Opening*
parenthesis.

—/ (($foo)=($nane))/
— $1 = “$foo=$name’; $2 =“$f00"; $3="$name”;

Clustering

¢ Parentheses are also used to ‘cluster’ parts
of the match together.

— aimilar to the function of parens in mathematics
* [prob|n|r|ljate/

— matches “prob” or “n” or “r” or “|” or “ate”
e [pro(bln|r|l)ate/

— matches “probate’ or “pronate’ or “prorate” or
“prolate”’

Clustering without Capturing

 For whatever reason, you might not want to

‘capture’ the matches, only cluster something

together with parens.

use (?:) instead of plain ()

* in previous example:

Ipro(?:b|njr|)ate/

— matches “probate’ or “pronate’ or “prorate” or
“prolate”’

— thistime, $1 does not get valueof b, n, r, or |

Beginnings and Ends of strings

« A > matches the beginning of a string
» $ > matchesthe end of astring
« $string = “Hi, Bob. How’s it going?’
* $string2 = “Bab, how are youAn”;
* $string =~ /"Bob/;

—returnsfase
* $string2 =~ /*Bob/;

— returnstrue
 $ matches ends in the same way.

Some meta-characters
» For complete list, see pg 161 of Prog. Perl
e \d > anydigit: 0-9
—\D - any non-digit
* \w > any ‘word’ character: a-z, A-Z, 0-9, _
—\W - any ‘non-word’ character
* \s > any whitespace: space, \n, \t
—\S = any non-whitespace character
* \b > aword boundary
—thisis“zero-length”. It'ssimply “true’ when at the
boundary of aword, but doesn’t match any actual
characters

—\B > true when not at aword boundary

The . Wildcard

* A single period matches “any character”.
— Except the new line
« usudly.
* [filename\..../

— matches filename.txt, filename.doc,
filename.exe, etc etc

Quantifiers

“How many” of previous charactersto match
e * > 0or more

e +-> 1ormore

e ?>00r1

* {N} = exactly N times

* {N,} - atleast N times

* {N, M} > atleast N times, no more than M
times

Greediness

e Quantifiersare ‘greedy’ by nature. They match
as much as they possibly can.

¢ They can be made non-greedy by adding a ? at
the end of the quantifier

e $string = “hello there!”

o $string =~ /e(.*)e/;
—$1 gets“llother”;

o $string =~ /e(.*?)e;
—$1gets“lloth”;

Character classes

¢ Use[] to match charactersthat have a certain
property
— Can be either alist of specific characters, or arange
* [[aeiou]/
—search $_for avowel
e /[[anA-N]/
—search $_ for any charactersin the 1% half of the
alphabet, in either case

/[0-9a-fA-F]/
—search $_for any ‘hex’ digit.

Character class catches
» use” at very beginning of your character classto
negate it
e [[Maeiou]/
— Search $_ for any non-vowel
— Careful! This matches consonants, numbers,
whitespace, and non-alpha-numerics too!
. wildcard loses its specianess in a character class
- [\w\s]/
— Search $_ for aword character, a whitespace, or adot

e tosearch for ‘]’ or ‘', make sure you backslash
them in a character class

TMI

That’s (more than) enough for now.

go over the material, play with it.

next week, more information and trivialities
about regular expressions.

Also, the trandliteration operator.

— doesn’t use Reg Exps, but does use binding
operators. Go figure.

