
1

Subroutines

Subroutines

• aka: user-defined functions, methods,
procdures, sub-procedures, etc etc etc

• We’ll just say Subroutines.
– “Functions” generally means built-in functions

• We’ll attempt to start out most basic, and
work our way up to complicated.

The Basics
sub myfunc{

print “Hey, I’m in a function!\n”;

}

…

myfunc();

• Because function already declared, () are optional
(ie, can just say myfunc;)

• Can declare without defining:
– sub myfunc;

– Make sure you define it eventually….
• official name of subroutine is &myfunc

– ampersand not normally necessary to call it

Parameters
• (aka Arguments, inputs, etc)
• Can call any subroutine with any number of

parameters.
• Get passed in via local @_ variable.
sub myfunc{

foreach $word (@_){

print “$word ”;

}

$foobar = 82

myfunc “hello”, “world”, $foobar;

• prints “hello world 82”

Passing current parameters

• Can call a function with the current value of
@_ as the parameter list by using &.

• &myfunc;

– myfunc’s @_ is alias to current @_
• same as saying myfunc(@_);

– it’s faster internally…

Squashing array parameters

• If arrays or hashes passed into a subroutine,
they get ‘squashed’ into one flat array: @_

@a = (1, 2, 3); @b=(8, 9, 10);

myfunc (@a, @b);

• inside myfunc, @_ = (1, 2, 3, 8, 9, 10);
• Maybe this is what you want.

– if not, need to use references…

2

References in Parameters

• To pass arrays (or hashes), and not squash them:
sub myfunc{

($ref1, $ref2) = @_;

@x = @$ref1; @y = @$ref2;

…

}

@a = (1, 2, 3); @b = (8, 9, 10);

myfunc (\@a, \@b);

Return values
• In Perl, subroutines return last expression evaluated.
sub count {

$sum = $_[0] + $_[1];

}

$total = count(4, 5);

#$total = 9

• Standard practice is to use return keyword
sub myfunc{

…

return $retval;

}

Return issues
• Can return values in list or scalar context.
sub toupper{

@params = @_;

foreach (@params) {tr/a-z/A-Z/;}

return @params;

}

@uppers = toupper ($word1, $word2);

$upper = toupper($word1, $word2);

#$upper gets size of @params

Scalar vs List Returns
• wantarray function

– Built-in function in Perl.
– If subroutine called in list context, return true (1)
– If subroutine called in scalar context, return false (“”)
– If subroutine called in void context, return undef.

• Perhaps we want to return entire list, or first element if
called in scalar context:

sub fctn{

…

return wantarray ? @params : $params[0];

}

Anonymous functions

• Can declare a function without giving it a name.
• call it by storing it’s return value in definition

– $subref = sub { print “Hello\n”; };

• to call, de-reference the return value:
– &$subref;

• works with parameters too..
– &$subref($param1, $param2);

Scoping

• Up to now, we’ve used global variables
exclusively.

• Perl has two ways of creating local
variables
– local and my

• what you may think of as local (from
C/C++) is really achieved via my.

3

my
• my creates a new variable lexically scoped to inner

most block
– block may be subroutine, loop, or bare { }

• variables created with my are not accessible (or even
visible) to anything outside scope.

sub fctn{

my $x = shift(@_);

…

}

print $x; #ERROR!!!

lexical variables
• Variables declared with my are called “lexical

variables” or “lexicals”
• Not only are they not visible outside block,

mask globals with same name:
$foo = 10;

{

my $foo = 3;

print $foo; #prints 3

}
print $foo; #prints 10

Where’s the scope
• subroutines declared within a lexical’s scope have

access to that lexical
– this is one way of implementing static variables in Perl

{

my $num = 20;

sub add_to_num { $num++ }

sub print_num { print “num = num\n”;
}

}

add_to_num;

print_num;

print $num; #ERROR!

local

• local does not create new variable
• instead, assigns temporary value to existing (global) variable
• has dynamic scope, rather than lexical
• functions called from within scope of local variable get the

temporary value
sub fctn { print “a = $a, b = $b\n”; };
$a = 10; $b = 20;
{
local $a = 1;
my $b = 2;
fctn();

}

#prints a = 1, b = 20

What to know about scope
• my is statically (lexically) scoped

– look at code. whatever block encloses my is the
scope of the variable

• local is dynamically scoped
– scope is enclosing block, plus subroutines called

from within that block
• Almost always want my instead of local

– notable exception: cannot create lexical variables
such as $_. Only ‘normal’, alpha-numeric
variables

– for built-in variables, localize them.

Prototypes
• Perl’s way of letting you limit how you’ll

allow your subroutine to be called.
• when defining the function, give it the ‘type’

of variable you want it to take:
• sub f1 ($$) {…}

– f1 must take two scalars
• sub f2($@) {…}

– f2 takes a scalar, followed by a list
• sub f3(\@$) {…}

– f3 takes an actual array, followed by a scalar

4

Prototype conversions

• sub fctn($$) { … }
• fctn(@foo, $bar)
• Perl converts @foo to scalar (ie, takes its

size), and passes that into the function
• sub fctn2(\@$) {…}
• fctn2(@foo, $bar)
• Perl automatically creates reference to

@foo to pass as first member of @_

Prototype generalities

actual array variable\@

subroutine (name or definition)&

file handle*

hash – ‘eats’ rest of params and
forces hash context

%

array – ‘eats’ rest of params and
force list context

@

scalar$

actual hash variable\%

actual scalar variable\$

Perl expects:if prototype char is:

Getting around parameters

• If you want to ignore parameters, call subroutine
with & character in front

• sub myfunc (\$\$){ … }

• myfunc (@array); #ERROR!

• &myfunc (@array); #No error here

