I ntroduction to Perl

How to run perl

* Perl isan interpreted language. This means
you run it through an interpreter, not a
compiler.

* Your program/script must first tell the
system where the interpreter is located

» Thisis done viathe “ shebang”

o #!/usr/ | ocal / bin/perl
— mildly different from the book

One more step...

» Must tell the OS that thisis an executable
file.

» Use chmod (seeintro to unix dides)

» Usualy only need to give yourself execute
permissions.

» Onceit's executable, type the filename at a
prompt, and it runs.

Very basic 1/0

» simpleintroduction to reading/writing from
keyboard/terminal.

» More advanced (ie, File) 1/0 will come
around in a couple weeks.

» Thiswill be just enough to allow usto do
some examples, if necessary.

Output to terminal

» thepri nt statement.
» Takes 0 or more arguments.

First (optional) argument is the filehandle.
— if omitted, printsto STDOUT.

Second, third, fourth, etc... arguments are
what to print.

— if omitted, printswhat ever isin variable $

Output examples

» Hello World program:
#! /usr/ bin/local / perl
print “Hello World\n";
 asthisisperl, you can put string in paren’s, but
you don’t need to (usually — because thisis Perl).
e more examples:
—print “My nane is $nane\n”;
—print “H ", “what\’'s ", “yours?\n”;
—print 5 + 3;
—print ((4 * 4). “\n");

Input from keyboard

* read line operator: <>
— aka“angle operator”, “ diamond operator”

— Enclosesfile handle to read from. Defaultsto STDIN,
which iswhat we want.

e $i nput = <>;
— read oneline from STDIN, and save in $input
* (Seevariable section, later in this presentation);
e @input = <>;
—read al lines from STDIN, and save as array in @input
« Again, this makes more sense later on...

Chop & Chomp

» Whenreading in, carriage return (“\n") is
included.

» Usualy don’t want that.

» chomp will take off the last character of a
string, if itisa“\n”.

» chop takes off last character of astring,
regardiess of what it is.
— Hence, chomp is “safer”.

e chomp ($foo = <>);

— Very common method of reading in one string
from command line.

Variables
* Three (basic) types of variables.
— Scalar
— Array
—Hash

» There are others, but we'll talk about them
at alater time....

Scalars

» Scdar ="“single value’

* In C/C++, many many different kinds of
single values:
—int, float, double, char, bool

* In Perl, none of these types need to be
declared

» Scalar variable can hold al these types, and
more.

Scalars

 All Scalar variables begin with a$
* next character isaletter or _
 remaining characters letters, numbers, or _

» Variable names can be between 1 and 251
charactersin length

* Ex: $foo, $a, $zebral, $F87dr_df3
» Wrong: $24da, $hi& bye, barfoo

Scalar Assignments

* Scaars hold any data type:

e $foo=3;

* $d=4.43;

s $temp='2’;

e $My_String = “Hello, I'm Paul.”

Arrays

 Concept isthe same asin C/C++
— Groups of other values
— Groups of scalars, arrays, hashes

« much more dynamic than C/C++
— no declaration of size, type

— can hold any kinds of value, and multiple kinds
of values

« All array variables start with the @
character
— @array, @foo, @My _Array, @temp34

Array assignments
 @foo=(1, 2,3, 4);
o @bar = (“hdlo”, “my”, “name”, “is’,
“Paul”);
o @temp=(34, ‘7, “Hi!", 43.12);
« Arrays are O-indexed, just asin C/C++

* $temp[1] ='Z’;
— NOTE: Thisisa*single value*, hencethe $
o $bar[3] =“was’;
— @bar now: (“hello”, “my”, “name’, “was’,
Paul”);
Array vs. Scalar
» $foo=3;

» @foo =(43.3, 100, 83, 15.12, “Hi!");
* $foo and @foo have *nothing in common*.
* In fact, $foo has nothing to do with $foo[3];

» “This may seem abit weird, but that’s okay,
because it isweird.”
— Programming Perl, pg. 54

More about arrays

« special variable for each array:
— @foo = (3, 25, 43, 31);
— $#foo==3. Last index of @foo.
— $foo[$#foo] == 31;
 This can be used to dynamically alter the size of an
array:
— $#foo = 5; #ereates two null values on the end of @foo
— $#foo = 2; #destroys all but the first three elements of @foo
» “Slices’ —part of an array (or hash)
— @bar = @fo0[1..3]; # @bar==(25, 43, 31)
— @bar = @f00[0,1]; #@bar ==(3, 25)

Join/Split

Built-in Perl functions
* Split —split astring into alist of values
— $BigString = “Hello,_I_am_Paul”;
— @strings = split/_/, $BigString;
—# @strings = (“Hello,”, “1”, “am”, “Paul");
» Join—join aligt/array of values together
—$BigString=join* ', @strings;
— #$BigString == “Héllo, | am Paul”;

Hash

» Anaogous to C++ hashtable.

» aka“Associative Array” —ie, array not
indexed by numerical sequence.

list of keys and values.

All hash variables start with %

Hash example
e Want alist of short names for months:
%months = (
“Jan” =>"“January”
“Feb” =>“February”
“Mar =>“March”

);
* reference by *curly* brackets...

— Avoid confusion with array notation
¢ $month{“Jan"} == “January”;

