
1

Introduction to Perl

How to run perl

• Perl is an interpreted language. This means
you run it through an interpreter, not a
compiler.

• Your program/script must first tell the
system where the interpreter is located

• This is done via the “shebang”
• #!/usr/local/bin/perl

– mildly different from the book

One more step…

• Must tell the OS that this is an executable
file.

• Use chmod (see intro to unix slides)
• Usually only need to give yourself execute

permissions.
• Once it’s executable, type the filename at a

prompt, and it runs.

2

Very basic I/O

• simple introduction to reading/writing from
keyboard/terminal.

• More advanced (ie, File) I/O will come
around in a couple weeks.

• This will be just enough to allow us to do
some examples, if necessary.

Output to terminal

• the print statement.
• Takes 0 or more arguments.
• First (optional) argument is the filehandle.

– if omitted, prints to STDOUT.
• Second, third, fourth, etc… arguments are

what to print.
– if omitted, prints what ever is in variable $_

Output examples
• Hello World program:
#!/usr/bin/local/perl

print “Hello World\n”;

• as this is perl, you can put string in paren’s, but
you don’t need to (usually – because this is Perl).

• more examples:
– print “My name is $name\n”;

– print “Hi ”, “what\’s ”, “yours?\n”;

– print 5 + 3;

– print ((4 * 4). “\n”);

3

Input from keyboard
• read line operator: <>

– aka “angle operator”, “diamond operator”
– Encloses file handle to read from. Defaults to STDIN,

which is what we want.
• $input = <>;

– read one line from STDIN, and save in $input
• (See variable section, later in this presentation);

• @input = <>;
– read all lines from STDIN, and save as array in @input

• Again, this makes more sense later on…

Chop & Chomp
• When reading in, carriage return (“\n”) is

included.
• Usually don’t want that.
• chomp will take off the last character of a

string, if it is a “\n”.
• chop takes off last character of a string,

regardless of what it is.
– Hence, chomp is “safer”.

• chomp ($foo = <>);
– Very common method of reading in one string

from command line.

Variables

• Three (basic) types of variables.
– Scalar
– Array
– Hash

• There are others, but we’ll talk about them
at a later time….

4

Scalars

• Scalar = “single value”
• In C/C++, many many different kinds of

single values:
– int, float, double, char, bool

• In Perl, none of these types need to be
declared

• Scalar variable can hold all these types, and
more.

Scalars

• All Scalar variables begin with a $
• next character is a letter or _
• remaining characters letters, numbers, or _
• Variable names can be between 1 and 251

characters in length
• Ex: $foo, $a, $zebra1, $F87dr_df3
• Wrong: $24da, $hi&bye, barfoo

Scalar Assignments

• Scalars hold any data type:
• $foo = 3;
• $d = 4.43;
• $temp = ‘Z’;
• $My_String = “Hello, I’m Paul.”

5

Arrays
• Concept is the same as in C/C++

– Groups of other values
– Groups of scalars, arrays, hashes

• much more dynamic than C/C++
– no declaration of size, type
– can hold any kinds of value, and multiple kinds

of values
• All array variables start with the @

character
– @array, @foo, @My_Array, @temp34

Array assignments
• @foo = (1, 2, 3, 4);
• @bar = (“hello”, “my”, “name”, “is”,

“Paul”);
• @temp = (34, ‘z’, “Hi!”, 43.12);
• Arrays are 0-indexed, just as in C/C++
• $temp[1] = ‘z’;

– NOTE: This is a *single value*, hence the $
• $bar[3] = “was”;

– @bar now: (“hello”, “my”, “name”, “was”,
“Paul”);

Array vs. Scalar

• $foo = 3;
• @foo = (43.3, 100, 83, 15.12, “Hi!”);
• $foo and @foo have *nothing in common*.
• In fact, $foo has nothing to do with $foo[3];
• “This may seem a bit weird, but that’s okay,

because it is weird.”
– Programming Perl, pg. 54

6

More about arrays
• special variable for each array:

– @foo = (3, 25, 43, 31);
– $#foo == 3. Last index of @foo.
– $foo[$#foo] == 31;

• This can be used to dynamically alter the size of an
array:
– $#foo = 5; #creates two null values on the end of @foo
– $#foo = 2; #destroys all but the first three elements of @foo

• “Slices” – part of an array (or hash)
– @bar = @foo[1..3]; # @bar==(25, 43, 31)
– @bar = @foo[0,1]; #@bar ==(3, 25)

Join/Split

• Built-in Perl functions
• Split – split a string into a list of values

– $BigString = “Hello,_I_am_Paul”;
– @strings = split /_/, $BigString;
– # @strings = (“Hello,”, “I”, “am”, “Paul”);

• Join – join a list/array of values together
– $BigString = join ‘ ’, @strings;
– # $BigString == “Hello, I am Paul”;

Hash

• Analogous to C++ hashtable.
• aka “Associative Array” – ie, array not

indexed by numerical sequence.
• list of keys and values.
• All hash variables start with %

7

Hash example
• Want a list of short names for months:
%months = (

“Jan” => “January”
“Feb” => “February”
“Mar => “March”
…

);
• reference by *curly* brackets…

– Avoid confusion with array notation
• $month{“Jan”} == “January”;

