Financial Applications of Fuzzy Case-Based Reasoning to Residential Property Valuation

William Cheetham Piero Bonissone GE Research and Development Center

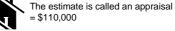
Discussion of homework

- evaluate data

- what technique did you use? what did you find?
- retrieval

Introduction

single family residence.


- how did you select similar cases? - reuse
- how did you determine a final price?
- did you determine confidence?
- what was you average error?

Outline

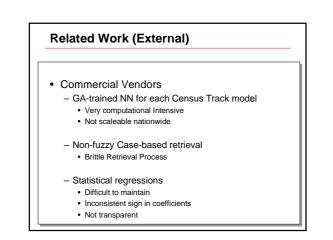
- Problem Description & Motivation
- Related Work
- APVT Architecture
- Comparable-based Approach (Fuzzy CBR)
- CBR Design
- · CBR Validation Stage
- Confidence Assessment
- Result Analysis
- Conclusions

at a given location • at a given time •Needed to determine: -Collateral value for mortgage origination -Asset value for mortgage insurance -Portfolio value for mortgage packages, etc.

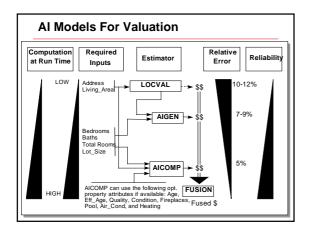
Residential property valuation is the process of determining a monetary estimate of the value of a

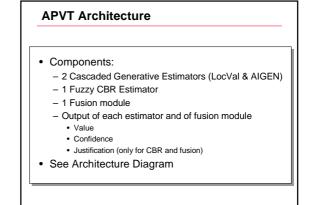
Problem Description and Motivation

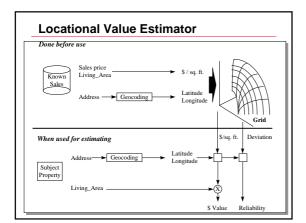
Appraisals are needed to:

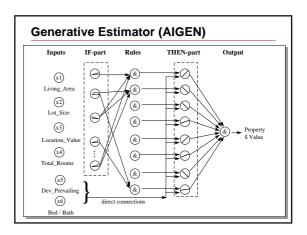

grant most new mortgages
 evaluate the value of packages of mortgages that may be purchased

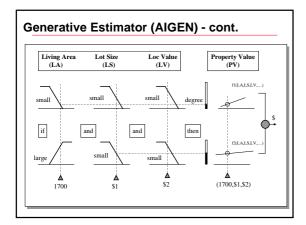
- The current manual process for appraising properties usually:
- requires an on-site visit by a human appraiser
- costs about \$500
- lasts three to four days
- subject to human variability

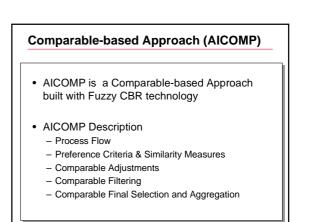

The most common method used by human appraisers is the "sales comparison approach" which involves:

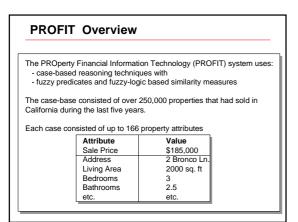

- finding recent sales comparable to the subject property
 adjusting the comparables' sales price to reflect differences Vs subject
- adjusting the comparables' sales price to reflect differences vs subject
 reconciling the comparables' adjusted prices to create an estimate

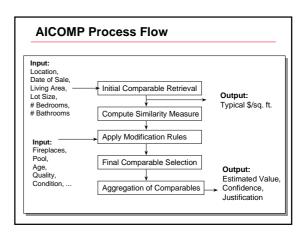

	ITEM	SUBJECT	COMPARABLE	NO. 1	COMPARING	ENO 2	COMPARA	LE NO. 3	Þ
a									
	Proximity to Subject								
	Sales Price	1							
	Price/Gross Liv. Area	\$ ET			1 🖾		8 2		
	Data and/or								
	Verification Sources	14			100 C			-	
	ALUE ADJUSTINENTS	DESCRIPTION	DESCRIPTION	+ (-) 2 Aljustment	DESCRIPTION	+ () & Alpeiner	DESCRIPTION	+ (-) 8 Alpethert	
	Sales or Financing Concessions								
	Date of Sale/Time								
E	Location					-		-	
	Lesschold/Teo Simple								
	58+							-	
	fev .								
	Design and Appeal Duality of Construction								
	Allery of Content (Content)				-				
SE CRO	Condition							-	
	Nove Grade	Total Borna Balha	You borns Balls		Teal Barra Batha		You Borns Baths		
	Room Count		100 C					1	
	Gross Living Area	Sq. FL	5q. R.		Sq. Ft.		5q. P.	-	
	Resonant & Finished								
	Rooms Below Grade Functional Utility								
	fielding Cooling								
	Freigy Efficient Items					-			
	Sarage/Carport				2			-	
	Forch, Patio, Deck,	-					1 A A		
	Fireplace(s), etc.								
	Fonce, Pool, etc.								
	MARK AND						T + T - 18		
	Iduated Sales Price		handrichter and and and a				hindrid a hori		
	f Comparable							S	
	Commente en Salas C	Instantion Installers 1	he subject property's co	mentionity to the	reighterhood, etc.)				
							_		
	ITEM	RUBJECT	COMPARABLE	NO. 1	COMPARABLE	# NO.2	COMPARA	LE NO. 5	
	bate, Price and Date								
	lource for prior sales								0

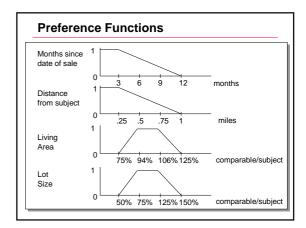



Related Work	(Internal)	
	s were used by diff evelop property va	
-LocVal estimat	tor	
-StatGen estimation	ator	
-Index based e	stimator	
Method Used	Data Needed	Error (median)
Location Value	Address & Liv. Area	10%
Statistical Formula	10 attributes	8%
Fuzzy-Neural Net	10 attributes	7%
Fuzzy CBR	11-30 attributes	5%
Human Appraiser	Site Inspection	3%









Initial Case Retrieval

- Initial retrieval is done by a standard SQL query against a DB.
- The query uses the following attributes & their corresponding maximum allowable deviations
 - Date of sale (within 12 months)
 - Distance (within 1 mile)
 - Living area (+ / 25%)
 - Lot size (+ 100% / 50%)
 Number of bedrooms (+/- 3)
 - Number of bathrooms (+/- 3)
- Retrieved cases are ranked according to (fuzzy membership) preference functions

As	Asymmetric Preference Functions											
Subject	Compara	ıble										
	1	1.5	2	2.5	3	3.5	4	4.5	5+			
1	1.00	0.75	0.20	0.05	0.01	0.00	0.00	0.00	0.00			
1.5	0.60	0.05	0.00	0.00	0.00							
2	0.10	0.00	0.00	0.00								
2.5	0.05	0.20	0.05	0.00	0.00							
3	0.01	0.80	0.40	0.10	0.05							
3.5	0.00	0.05	0.15	0.45	0.85	1.00	0.85	0.45	0.30			
4	0.00	0.90	1.00	0.90	0.70							
4.5	0.00	0.70	0.95	1.00	0.95							
5+	0.00	0.00	0.00	0.05	0.15	0.35	0.75	0.95	1.00			
	E	= 2 = 2.5 = 0.7										

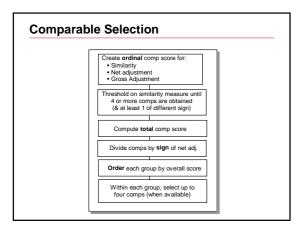
eference						
Comparable's # Bedrooms		1	2	3	4	5
# Bedrooms		1.00	0.50		0.00	0.00
	1	1.00	0.50	0.05	0.00	0.00
Subject's	2	0.20	1.00	0.50	0.05	0.00
# Bedrooms	3	0.05	0.30	1.00	0.60	0.05
	4	4 0.00 0.05 0.50				0.60
	5	0.00	0.00	0.05	0.60	1.00
	6+	0.00	0.00	0.00	0.20	0.80
С	ubjec	t Bedro Irable I ence	= 5 = 4 = 0.6			

Similarity Measure Computation

- Preference Weighting and Aggregation
 - Weights obtained using experts guesses then optimized
 - The subject property is compared against each comparable along the six variables used in the initial retrieval
 - The preference functions are used to evaluate each variable
 - The similarity measure is the weighted sum of the the preferences

Attribute	Subject	Comparable	Com paris on	Pre fe re nc e	Weight	~
						Preferen
Months since date of	х	6 m on ths	6 m on th s	0.67	0.222	0.1489
Dis ta n c e	х	0.2 m ile s	0.2 m ile s	1.00	0.222	0.2222
Livin g Are a	2000	1800	90%	0.79	0.333	0.2633
Lot S ize	20000	35000	175%	0.33	0.111	0.0367
# Bedroom	3	3	0%	1.00	0.056	0.0556
# Bathroom s	2.5	2	2.5 -> 2	0.75	0.056	0.0417
Similarity Measure (S	Sum of W	eighted Pre	fe re nc e /S um	of Weights) =	0.768333

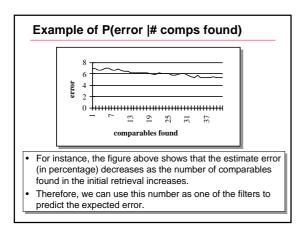
Adjustr	nent Rules
Living Area	(subject - comp) * (22 + (Sales_Price_of_comp * .00003))
Lot Area	(subject - comp) * 1
Fireplaces	(subject - comp) * 2000
Effective Yea	r Built
	<pre>w * (Age_comp-Age_subject) * (Sale_Price_comp/1000) if (Age_subject + Age_comp) / 2 < 4 then w = 4 else if (Age_subject + Age_comp) / 2 < 6 then w = 3 else if (Age_subject + Age_comp) / 2 < 8 then w = 2 else if (Age_subject + Age_comp) / 2 < 15 then w = 1 else w = .5 max of 10% of salePrice</pre>
Quality	(.02 * sale price) for each level of difference:
	(Luxury > Excellent > Good> Average > Fair > Poor)
Pool	\$10000 for a pool

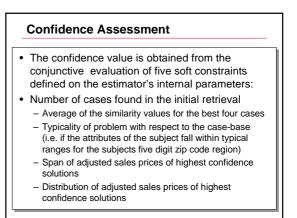

Adj	ustm	ient	Tabl	e fo	r Bat	hroo	oms		
Subject	Comp								
	1	1.5	2	2.5	3	3.5	4	4.5	5+
1	0.00	-1.50	-3.00	-5.00	-8.00	N⁄A	N/A	N⁄A	N/A
1.5	1.00	0.00	-1.00	-3.50	-6.00	-9.00	N⁄A	N⁄A	N/A
2	4.00	1.50	0.00	-2.25	-4.00	-6.50	N/A	N⁄A	N/A
2.5	7.00	4.50	2.00	0.00	-2.00	-4.50	-7.00	N⁄A	N/A
3	9.00	6.50	3.00	2.00	0.00	-2.50	-5.00	-7.50	'@*-5
3.5	N⁄A	8.50	6.50	4.50	2.50	0.00	-3.00	-5.50	'@* <u>-</u> 5
4	N/A	N⁄A	8.50	7.00	5.50	3.00	0.00	-3.00	'@* <u>-</u> 5
4.5	N⁄A	N/A	N⁄A	10.00	8.00	6.00	3.00	0.00	'@* <u>-</u> 5
5+	N/A	N⁄A	N/A	'@*5	'@*5	'@*5	'@*5	'@*5	0.00

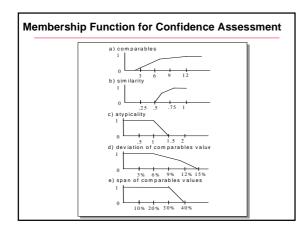
Attribute	Subject	Comparable	Adjustment	
SalePrice	?	175000	175000	
LivingArea	2000	1800	5450	
LotArea	20000	25000	-5000	
TotalBaths	2.5	2	2000	
Bedrooms	3	3		
Fireplaces	1	0	2000	
EffYearBuilt	93	89	2800	
Quality	Good	Average	3500	
Condition	Average	Average		
Pool	Yes	No	10000	
Adjusted Pr	ice =		195750	

Comparable Filtering

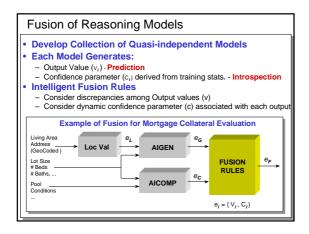
We would like the selected comparables to have the following properties:


- No single adjustment should be larger (in absolute value) than 10% of sales price
- Net adjustment should not exceed 15% of sales price
- Gross adjustment should not exceed 25% of sales price
- The unit price for living area of the comparables should not vary more than 15% from each other and should bracket that of the subject
- Comparables should be as close as possible to the subject
- The value estimated for the subject should be bracketed by the sales
- price of the comparables




Value Rank Value Rank Value Rank Rank	Value Rank Value Rank Value Rank Rank	:xampi	e ot	Cor	npara	ble	Ranking	3	
Value Rank Value Rank Value Rank Rank	Value Rank Value Rank Value Rank Rank								
Value Rank Value Rank Value Rank Rank	Value Rank Value Rank Value Rank Rank								
Value Rank Value Rank Value Rank Rank	Value Rank Value Rank Value Rank Rank								
Value Rank Value Rank Value Rank Rank	Value Rank Value Rank Value Rank Rank								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comparable	Score	Score	Net Adjust	N. A.	Gross Adjust	G. A.	Total
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	306-018 0.88 2 3586 5 4186 1 093-011 0.78 3 5686 7 8191 7 305-006 0.67 4 6150 8 6160 6 685-046 0.64 5 3139 3 6099 5 847-984 0.58 6 -948 1 -5670 3 873-005 0.53 7 -5261 6 9261 8 431-023 0.48 8 3346 4 4410 2	•	Value	Rank	Value	Rank	Value	Rank	Rank
093.011 0.78 3 5686 7 8191 7 17 305.006 0.67 4 6150 8 6160 6 18 685.046 0.64 5 3139 3 6099 5 13 847.984 0.88 6 -948 1 5670 3 10 873.005 0.53 7 -5261 6 9261 8 21 431.023 0.48 8 3546 4 4410 2 14	093-011 0.78 3 5686 7 8191 7 305-006 0.67 4 6150 8 6160 6 685-046 0.64 5 3139 3 6099 5 847-984 0.88 6 -948 1 -5670 3 873-005 0.53 7 -5261 6 9261 8 431-023 0.48 8 3546 4 4410 2	113-012	0.95	1	1344	2	5924	4	7
305-006 0.67 4 6150 8 6160 6 18 685-046 0.64 5 3139 3 6099 5 13 847-984 0.58 6 -948 1 5670 3 10 937-005 0.53 7 -5261 6 9261 8 21 431-023 0.48 8 3546 4 44410 2 14	305-006 0.67 4 6150 8 6160 6 685-046 0.64 5 3139 3 6099 5 847-984 0.58 6 -948 1 5670 3 973-005 0.53 7 -5261 6 9261 8 431-023 0.48 8 3546 4 4410 2	306-018	0.88	2	3586	5	4186	1	8
685-046 0.64 5 3139 3 6099 5 13 847-984 0.58 6 -948 1 5670 3 10 873-005 0.53 7 -5261 6 9261 8 21 431-023 0.48 8 3546 4 44410 2 14	685-046 0.64 5 3139 3 6099 5 847-984 0.58 6 -948 1 -5670 3 873-005 0.53 7 -5261 6 9261 8 331-023 0.48 8 3546 4 4410 2	093-011	0.78	3	5686	7	8191	7	17
847-984 0.58 6 -948 1 5670 3 10 873-005 0.53 7 -5261 6 9261 8 21 431-023 0.48 8 3546 4 4410 2 14	847-984 0.58 6 -948 1 5670 3 3 873-005 0.53 7 -5261 6 9261 8 431-023 0.48 8 3546 4 4410 2	305-006	0.67	4	6150	8	6160	6	18
873-005 0.53 7 -5261 6 9261 8 21 431-023 0.48 8 3546 4 4410 2 14	873-005 0.53 7 -5261 6 9261 8 431-023 0.48 8 3546 4 4410 2	685-046	0.64	5	3139	3	6099	5	13
431-023 0.48 8 3546 4 4410 2 14	431-023 0.48 8 3546 4 4410 2	847-984	0.58	6	-948	1	5670	3	10
		873-005	0.53	7	-5261	6	9261	8	21
331-018 0.44 9 9310 9 11300 9 27	331-018 0.44 9 9310 9 11300 9	431-023	0.48	8	3546	4	4410	2	14
		331-018	0.44	9	9310	9	11300	9	27
			-						

xample of	Final Aggre	gation	
Comparable	Adjusted Price	Score	Weighted Price
113-012	197000	0.95	187150
306-008	202000	0.88	177760
093-011	196500	0.78	153270
685-046	192000	0.64	122880
847-984	201000	0.58	116580
Total		3.83	757640
Final actimate -	757640/ 3.83 =		199900


 of its five confidence characteristics used C4.5 to create rules predicting the error from the estimator's characteristics validated these rules via data visualization 		Validation Stage
 the predicted sales price of each property & compared it with its actual sales price to derive the estimate's error. the percentage error and its five confidence characteristics With these new data, we: analyzed the conditional distributions of the estimate's error, given each of its five confidence characteristics used C4.5 to create rules predicting the error from the estimator's characteristics validated these rules via data visualization 	•	
 sales price to derive the estimate's error. the percentage error and its five confidence characteristics With these new data, we: analyzed the conditional distributions of the estimate's error, given each of its five confidence characteristics used C4.5 to create rules predicting the error from the estimator's characteristics validated these rules via data visualization 	•	For each property, we computed:
 With these new data, we: analyzed the conditional distributions of the estimate's error, given each of its five confidence characteristics used C4.5 to create rules predicting the error from the estimator's characteristics validated these rules via data visualization 		
 analyzed the conditional distributions of the estimate's error, given each of its five confidence characteristics used C4.5 to create rules predicting the error from the estimator's characteristics validated these rules via data visualization 		- the percentage error and its five confidence characteristics
 of its five confidence characteristics used C4.5 to create rules predicting the error from the estimator's characteristics validated these rules via data visualization 	•	With these new data, we:
characteristics - validated these rules via data visualization		 analyzed the conditional distributions of the estimate's error, given each of its five confidence characteristics
 manually transformed the rules into the membership functions for 		 validated these rules via data visualization
confidence assessment		 manually transformed the rules into the membership functions for confidence assessment

Random Sa	•							on ⁻	Tests
	Error			Atyp.	Comp				
	-9.8	Found 3	-	1.42		Span 6.32			1
	-9.8		0.00						
	-2					8.57			
	0.5								
	-1.6								
	5.2					12			
	5.2								
	3.1	19	0.74	0.81	2.83	8.11	0.80		
	-14	12	0.82	1.97	3.85	15	0.00		
	7.8	11	0.77	1.34	4.24	13	0.32		
• Each row is a									
 Columns show 	w the	estin	nate s	erro	r, its i	live c	harac	terist	ics, and its
confidence va	alue (CV)							
• CV is the conj	iuncti	ive (m	ninim	um) e	evalua	ation (of the	mem	nbership
	2 C								

 Analysis of Results (cont.) The confidence value was subdivided into three groups (good, fair, and poor) to identify the largest good set with the lowest error. Results of testing 7,293 properties: 		
Good (E) Fair (I)	63% 24%	5.4% 7.7%

Conclusions

- Developed a CBR system for residential property valuation, which generates an estimate and a confidence value
- The system uses Fuzzy Logic to translate current appraisers practices into:
 - Retrieval preference criteria
 - Similarity computation
 - Solution adaptation
 - Confidence value generation
- The confidence value determine the CBR estimate suitability for decision making.

Conclusions (cont.)

- The system scalability was proven by thousands of transactions used in validation stage.
- The system can also be used to validate a property value provided by an external source.
- The system identifies the best set of comparables to justify the given value and provides an associated confidence value.
- Possible Future work:
 - automatic case-base maintenance and update (determination of whether the selection or adaptation rules need to be changed, due to changing market conditions)
 - automatic generation of the new selection & adaptation rules.