Belief Networks
Artificial Intelligence: A Modern Approach by Russell & Norvig Chapter 15, 19

Bill Cheetham cheetham@cs.rpi.edu Kai Goebel goebel@cs.rpi.edu

Properties of Belief Nets

1) A set of random variables make up the nodes of the network

2) A set of direct links or arrows connect pairs of nodes. An arrow from node X to node Y means that X has a direct influence on Y

3) Each node has a conditional probability table that quantifies the effects that the parents have on the node

4) The graph has no directed cycles

Burglary	Quake	P(Alarm Burglary, Qua	
		True	False
True	True	0.950	0.050
True	False	0.940	0.060
False	True	0.290	0.710
False	False	0.001	0.999

Derivative-Free Optimization

Derivative-Free Optimization

Example - using the network

 $P(x_1, ..., x_n) = sum P(x_i | Parents(x_i))$ for all I

Probability that alarm sounded, but neither a burglary nor an earthquake has occurred, and both John and Mary call.

P(J ^ M ^ A ^ not B ^ not E)

- = P(J|A) P(M|A) P(A|notB^notE) P(notB) P(notE)
- = 0.90 * 0.70 * 0.001 * 0.999 * 0.998
- = 0.00062

Creating a belief net

Each node must be conditionally independent from its predecessors

$$P(X_i| x_{i-1}, ..., x_1) = P(X_i|Parents(x_i))$$

The parents of node x, should only be the nodes that directly influence it

$$P(M|J, A, B, E) = P(M|A)$$

Derivative-Free Optimization

Network Construction

- 1) Choose the set of relevant variables, X,
- 2) Choose an ordering for the variables
- 3) While there are variables left:
 - a) Pick a variable X_i and add a node to the network for it.
 - b) Set Parents(X_i) to some minimal set of nodes already in the net such that it is conditionally independent from all nodes not in Parents(X_i)
 - c) Define the conditional probability table for X_i

Derivative-Free Optimization

Applications of BBN

GE Power Systems - Diagnosing Power Generators

GE Transportation - DiagnosingTrains

Kana - E-mail handling **Micorsoft - Office Assistant**

Derivative-Free Optimization **BBN Applications - Lumiere**

BBN Applications - Lumiere The bargraph is a probability distribution about the needs of the user. The large, red bar indicates the system's computation of the likelihood hat the user would like being notified with some assistance.

