10/16/2001

Sof t Conputing:| Reinforcenent Learning L Sof t Conputing:| Reinforcenent Learning L

What we will talk about

Temporal Differences
Dynamic Programming

Reinforcement Learning NN Implementation

(chapter 10)

Kai Goebel, Bill Cheetham

GE Corporate Research & Development
goebel@cs.rpi.edu
cheetham@cs.rpi.edu

Rei nf or cement Lear ni ng L Rei nf or cement Lear ni ng L
Introduction Reinforcement Learning: Policy
. J
Supervisor gives feedback in form of score - Find path to gold pot
desired outcome is NOT fed back - Record path (different colored
stones)
. - . - If successful, add stone of the
Feedback is both positive and negative same color (reward)
- If not successful, remove stone®
Tendency to reproduce the result leading to - Repeat many times
positive feedback is strengthened (and vice P y H Gold
versa) p - NuMg
doun NunLlack + Nurn/vhne
- Works well for small state space 3
Rei nf or cenent Lear ni ng L Rei nf or cement Lear ni ng L
Temporal Difference (TD) Learning TD(A)
Credit is assigned based on the difference Update rule

between (temporally) successive predictions t
. . aw, = alV,., —v')Z A0V,

The (discounting) recency parameter A Y

determines the type of learning

where
(ordinary) classical V, is the prediction value at time t
Super.vised T0() 0 TD(A) 0 TD(0) Dynamic] A is the recency parameter (between 0 and 1)
Learning Programming k determines how many steps in the past to
A =1: cost in future as important as now, look

propagate all the way through path Advantage over supervised learning:

A =0: just consider next state Complete data not available

Adjustments k steps in the past are exponentially If an unlikely “bad” event happens, change only
weighted inlnto ot ai ctn '

Page 1

Sof t Conputing:| Reinforcenent Learning

Pole Balancing Using Reinforcement

failure 6>0,,,
X<Xmin 9

X>Xmax

reward:-1 for failure

0 otherwise
decision: move to left or right
4 state variables:

cart position, velocity, pole position, velocity
diccrotizod intn A¥AvAYAR=1R2 ctatoc

L

Rei nf or cenent Lear ni ng
Simple Reinforcement Example

Consider the following
path problem:
* numbers above and

under arcs denote cost
between two states

« impose probability for
the transition between
two states:

- 3/4to go up
- 1/4 to go down

Sof t Conputing:| Reinforcenent Learning

Desired Result

pup:3/4
Example to calculate

expected cost of state:
3/4(0+4)+1/4(0+0)=3
3/4(0+6)+1/4(0+2)=5
3/4(3+2)+1/4(5+4)=6 1

Pdown™ 1N

10/16/2001

Rei nf orcenent Lear ni ng
Dynamic Programming vs

Reinforcement Learning

Page 2

Motivation:

Find optimal path from one point to another by
considering the best choice at each arc.

DP Formulation:
«Define optimal value function

* Rule that assigns values to subproblems
*Write recurrence relation

« Set of formulae relating different nodes S
*Note boundary conditions

Absorbing state: no cost after that (goal: reach
that state)

Sof t Conputing:| Reinforcenent Learning

Values of the state change according to:
S(t): pup (COS up + S(t +1Xp)+ pdcwn (COS down + S(t + l)dcwn)

where
« S(t)=value of current state
* pyp=probability to go up
* cost,,=cost of the arc going up
. S(t.+l) up=value of the succeeding state from S(t)
going up
* Pgown=Probability to go down
* costy,,,=cost of the arc going down

* S(t+1) 4own=value of the succeeding state from S(t)
going down

Sof t Conputing:| Reinforcenent Learning

Reinforcement lite

The error between two states is:

E =0.5(c, + St +1)-Sk)y
where
e S(t)=value of preceding state
e S(t+1)=value of succeeding state
* c=cost between two states

* The gradients of the error wrt the states consists
of the terms
o0E an 0E
as(t) as(t +1)
but average of change of going into node cancels
out with coming out of node (on average, for

stochastic problem) =>no convergence
Consider only dE/dS(t)

10/16/2001

Rei nf orcenent Lear ni ng L Rei nf orcenent Lear ni ng L
NN Implementation Procedure
Represent path problem in Map to NN «Start with random weights
coordinate system 33 representation *Run network
X2 (1) +Get output values
22 «Compute error between 2 states
11 (look up cost between 2 states)
' 31 *Change weights using backprop
, (with incomplete gradient)
0.0 X1 *Go to next state and repeat
3.1 until last node (x=3) is reached
1-1 ' «Continue many (!) times
until average of output has settled
2,2 X1 X2
. 3-3 "

Sof t Conputing:| Reinforcenent Learning

Sof t Conputing:| Reinforcenent Learning

Observations Results

Manipulating the parameters was crucial beta leta #cycles (exp) |S(0,0) | S(L1) |s(L-1) |S(2.2) s(20) |s(2-2) SSE
0.01 0.1 3 10282 6.617 6.378 295 3838 3512 2.22
B needed to be < 0.01 0.01 0.1 4 10276 6.633 6.35 2944 3.923 3.469 1.983
. . 0.01 0.1 5 10301 6.675 6.311 2.929 4.013 3.379 1765
Varying numbers of hidden nodes was used (1-10) 0.01 0.1 6 10321 6.696 6.309 2939 4.049 3516 1.857
0.1 0.1 6 9883 6.601 4.195 3101 4.755 4.487 5914
n>3 needed for convergence 1 o1 6 9009 6.475 7.8l2 3.921 5073 5638 12304
. 0.01 0.001 6 10009 5.993 6.133 3.194 472 4.293 1.905
changmg n seemed to have no effects 0.01 0.0001 6 9991 6.356 5.533 3.627 3.619 2739 2.739
0.01 0.1 5 10301 6.675 6.311 2.929 4.013] 3379 1.765

Sof t Conputing:| Reinforcenent Learning

last slide

Page 3

