Soft Computing: Fuzzy Sets	
Fuzzy Sets	
Kai Goebel, Bill Cheetham	
GE Corporate Research & Development goebel@cs.rpi.edu	
cheetham@cs.rpi.edu	

(adapted from slides by R. Jang)

Soft Computing: Fuzzy Sets

Fuzzy Sets: Outline

Introduction

Basic definitions and terminology Set-theoretic operations

MF formulation and parameterization

- MFs of one and two dimensions
- Derivatives of parameterized MFs

More on fuzzy union, intersection, and complement

- Fuzzy complement
- Fuzzy intersection and union
- Parameterized T-norm and T-conorm

	Soft Computing: Fuzzy Sets
	Motivation
	-Treat vague (uncertain) concepts or information
	-Use knowledge expressed linguistically
	-Perform non-linear mapping from input to output described precisely mathematically
3	

/	Soft Computing: Fuzzy Sets
	Probability vs. Fuzziness
	Randomness:
	uncertainty described by tendency (frequency) of a random variable to take on a value in a specified region
	Interpretations: frequency -> willingness to accept bet (subjective probability)
	Fuzziness:
	degree to which the element satisfies properties characterized by a fuzzy set.
	Interpretations: Possibility -> similarity -> desirability

Boolean Al	gebra (Run through)	
		→
Assign binary	truth value to statements	
A statement	A ¬ A	
i tiue	1 0	
0 false	0 1	
	·	rators
A B AVB		
0 0 0	0 0 0	
0 1 1	0 1 0	
1 0 1	1 0 0	
	$\begin{array}{c c} \hline A & statement \\\hline 1 & true \\\hline 0 & false \\ \hline $	$\begin{array}{c cccc} \hline 1 & true & \hline 1 & 0 \\ \hline 0 & false & \hline 0 & 1 \\ \hline \end{array}$ Combine statements using AND and OR ope $\hline \hline A & B & AvB \\ \hline 0 & 0 & 0 & \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 & 1 & 0 \\ \hline \end{array}$

	Soft Computing: Fuzzy Sets
	Fuzzy Union: T-conorm or S-norm
	Basic requirements:
	 Boundary: S(1, 1) = 1, S(a, 0) = S(0, a) = a
	 Monotonicity: S(a, b) < S(c, d) if a < c and b < d
	 Commutativity: S(a, b) = S(b, a)
	 Associativity: S(a, S(b, c)) = S(S(a, b), c)
	Four examples (page 38):
	• Maximum: Sm(a, b)
	 Algebraic sum: S₄(a, b)
	• Bounded sum: S _b (a, b)
	• Drastic sum: S₀(a, b)
	• Drastic sum: Sd(a, b)
31	

	Soft Computing: Fuzzy Sets
	Summary
	Basic definitions and terminology
	 Fuzzy Sets (ordered pairs of variable and MF value)
	MF formulation and parameterization
	MFs of one and two dimensions
	Set-theoretic operations
	Union, intersection, etc.
	Generalization of intersection (AND): T-norm, e.g., "min"
	 Generalization of union (OR): T-conorm, e.g., "max"
20	

	Soft Computing: Fuzzy Sets
	
	last slide
37	