

\%	Soft Computing: Fuzzy Sets Fuzzy Sets: Outline
	Introduction Basic definitions and terminology Set-theoretic operations MF formulation and parameterization - MFs of one and two dimensions - Derivatives of parameterized MFs More on fuzzy union, intersection, and complement - Fuzzy complement - Fuzzy intersection and union - Parameterized T-norm and T-conorm

	Soft Computing: Fuzzy Sets Motivation
-Treat vague (uncertain) concepts or information -Use knowledge expressed linguistically -Perform non-linear mapping from input to output described precisely mathematically	

| Soft Computing: Fuzzy Sets |
| :--- | :--- |
| Probability Vs. Fuzziness |\quad| Randomness: |
| :--- |
| uncertainty described by tendency
 (frequency) of a random variable to take on a
 value in a specified region
 Interpretations: frequency -> willingness to accept bet
 (subjective probability)
 Fuzziness:
 degree to which the element satisfies |
| properties characterized by a fuzzy set.
 Interpretations: Possibility -> similarity -> desirability |
| 4 |

	Soft Computing: Fuzzy Sets MF Terminology		
${ }^{13}$			

\%	Soft Computing: Fuzzy Sets More Terminology and Definitions
14	Normality core non-empty Fuzzy singleton support one single point Fuzzy numbers fuzzy set on real line R that satisfies convexity and normalit Symmetricity $\mu_{A}(c+x)=\mu_{A}(c-x) \text { for all } x \in X$ Open left or right, closed $\begin{aligned} & \lim _{x \rightarrow-\infty} \mu_{A}(x)=1 \\ & \lim _{x \rightarrow+\infty} \mu_{A}(x)=0 \end{aligned}$

\%	Soft Computing: Fuzzy Sets Convexity of Fuzzy Sets
	A fuzzy set \boldsymbol{A} is convex if for any $\boldsymbol{\lambda}$ in $[0,1]$, $\mu_{A}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left(\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right)$ Alternatively, \boldsymbol{A} is convex if all its α-cuts are convex.

Soft Computing: Fuzzy Sets

Set-Theoretic Operations

Subset:

$A \subseteq B \Leftrightarrow \mu_{A}(x) \leq \mu_{B}(x) \quad$ for all x
Complement:
$A=X-A \Leftrightarrow \mu_{-}^{-}(x)=1-\mu_{A}(x)$
Union:
$C=A \cup B \Leftrightarrow \mu_{c}(x)=\max \left(\mu_{A}(x), \mu_{B}(x)\right)=\mu_{A}(x) \vee \mu_{B}(x)$
Intersection:
$C=A \cap B \Leftrightarrow \mu_{c}(x)=\min \left(\mu_{A}(x), \mu_{B}(x)\right)=\mu_{A}(x) \wedge \mu_{B}(x)$

\%	Soft Computing: Fuzzy Sets Fuzzy Union: T-conorm or S-norm
	Basic requirements: - Boundary: $S(1,1)=1, S(a, 0)=S(0, a)=a$ - Monotonicity: $\mathrm{S}(\mathrm{a}, \mathrm{b})<\mathrm{S}(\mathrm{c}, \mathrm{d})$ if $\mathrm{a}<\mathrm{c}$ and $\mathrm{b}<\mathrm{d}$ - Commutativity: $\mathbf{S}(\mathrm{a}, \mathrm{b})=\mathbf{S}(\mathrm{b}, \mathrm{a})$ - Associativity: $\mathbf{S}(\mathrm{a}, \mathrm{S}(\mathrm{b}, \mathrm{c}))=\mathbf{S}(\mathbf{S}(\mathrm{a}, \mathrm{b}), \mathrm{c})$ Four examples (page 38): - Maximum: $\mathbf{S m}_{\mathbf{m}}(\mathrm{a}, \mathrm{b})$ - Algebraic sum: $\mathrm{S}_{\mathrm{a}}(\mathrm{a}, \mathrm{b})$ - Bounded sum: $\mathrm{S}_{\mathrm{b}}(\mathrm{a}, \mathrm{b})$ - Drastic sum: $\mathrm{S}_{\mathrm{c}}(\mathbf{a}, \mathrm{b})$

| Soft Computing: Fuzzy Sets | |
| :--- | :--- | :--- |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

