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Stuff we talked about

Categories
• Unsupervised Learning
• Reinforcement Learning
• Unsupervised Learning

Hopfield Net

Perceptron
• Single Layer
• Multi Layer

Radial Basis Function Network
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Neurons
Real neuron
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Hopfield Network Operation

Picture is pattern; stored as attractor in the 
configuration space. 

From arbitrary starting points, one attractor will 
be found
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Hopfield Architecture
- Recurrent Network

- Symmetric Architecture

- Evaluation until no more changes are observed
i.e., network settles into local minimum config.

- network output at each node: updating rule:
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Hopfield Example
Learn x=[1 1 -1 -1]

which gives us the weight matrix

w=[0     1    -1    -1

1     0    -1    -1
-1    -1     0     1

-1    -1     1     0]

Now let’s check the slightly corrupted pattern

p=[1 1 -1 1]
which will restore the pattern found close

y=[1 1 -1 -1]

with an energy level of E=-6

wij

1 2 3 4

w14=-1
w13=-1

w12=-1 w34=-1

w23=-1
w24=-1
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More Complex Hopfield Examples

Reconstruction of Images

binary images are 130x180 pixels

Soft Computing: Neural Networks

8

Single-Layer Perceptron
Example: Gender classification (according to Jang)
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Network Arch.

y = signum(hw1+vw2+w0)

-1 if female
1 if male=
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Learning:

select an input vector

if the response is incorrect, modify all weights ∆w t xi i i= η 
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Two-Layer Perceptron: XOR

Node output as surface of their two inputs

note location of “o” and “x”
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Multilayer Perceptrons (MLPs)

Learning rule:
• Steepest descent (Backprop)
• Conjugate gradient method
• All optim. methods using first derivative
• Derivative-free optim.

Activation function

Network architecture
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or logistic function
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Back-prop procedure
Make incremental change in the direction dE/dw to 
decrease the error.
The learning rule for each node can be derived using the 
chain rule...
…to propagate the error back through a multi-layer
perceptron 1. Initialize weights to small random values
2. Choose a pattern and apply it to input layer
3. Propagate the signal forward through the network
4. Compute the deltas for the output layer
5. Compute the deltas for the preceding layers by 
propagating the error backwards
6. Update all weights
7. Go back to step 2 and repeat for next pattern
8. Repeat until error rate is acceptable
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Momentum

If error minimum in long narrow valley,
then updating can happen to zig-zag down the 
valley

smoothes weight updating

can speed learning up ∆ ∆w E ww prev= − ∇ +η α
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Local Minima

There is no guarantee that the algorithm 
converges to a global minimum

- check with different initial conditions 
(different weights, etc.)

- perturb the system (data) with noise to 
improve result
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MLP Decision Boundaries

A B

B A
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XOR Interwined General

1-layer: Half planes
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2-layer: Convex
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3-layer: Arbitrary
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Radial Basis Function (RBF) Networks

Each node is described by a bell shaped function

where
ci is the center of the curve

Output:
weighted sum
linear combination

Network architecture
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XOR, revisited

x y output
0 0 0
0 1 1
1 0 1
1 1 0
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RBF and FIS

Consider the radial basis functions:

and a linear combination of the output variables 

then the response is equivalent to ...
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last slide


