
Java Overview Part II

Based on Notes by J. Johns
(based on Java in a Nutshell, Learning

Java)
Also Java Tutorial, Concurrent

Programming in Java

Access Control

• Public – everyone has access
• Private – no one outside this class has

access
• Protected – subclasses have access
• Default – package-access

Final Modifier

• final class – cannot be subclassed
• final method – cannot be overriden
• final field – cannot have its value

changed. Static final fields are compile
time constants.

• final variable – cannot have its value
changed

Static Modifier

• static method – a class method that can
only be accessed through the class
name, and does not have an implicit
this reference.

• static field – A field that can only be
accessed through the class name.
There is only 1 field no matter how
many instances of the class there are.

Topics

• Concurrent Programming in Java
– Threads
– Synchronization
– Groups/Priorities
– Inter-thread communication

• java.io package
– Streams
– Readers/Writers
– Object serialization/persistence

Concurrent Programming

• What is a Thread?
• What can go wrong with a Thread?
• How can we fix it?
• How does Java handle them?
• Why would I use them?

What is a Thread?

• A Thread is a single, sequential flow of
control within a program.

• Now they are so ubiquitous that you
don’t notice any more.
– DOS vs. Windows

Processes vs. Threads

• Processes
– Completely separate, unrelated concurrent

execution on the level of the operating system.
(eg multiple programs running at the same time)

• Threads
– Concurrent units of execution within a given

program. (eg pulling down a menu while loading a
web page within a web browser)

Life cycle of a Thread

New Ready

Blocked

Running

Done

Life cycle of a Thread (cont’d)

• The OS can interrupt the thread at any
time while it is running, and allow any
other thread to run.

• Threads can put themselves into a wait
state until another thread wakes them
up.

What can go wrong?

• Assuming that threads, existing in the
same program, have access to the
same variable.

• What if one is reading data from an
array, gets interrupted, and another
one writes to that array, even though
the thread wanted the old values?

What can you do about it?

• synchronized is a keyword that can
be applied to a method to say that one
and only one thread will have access to
this method at a time.

public synchronized void blah()
{ }

More on synchronized
• synchronized deals with locks on a

given object. Every object only has 1
lock. It can be used as a statement
inside a block of code instead of on a
whole method.

{ …
synchronized (o) { … }

}

More on synchronized
public synchronized void blah()
{…}

Is the same as
public void blah () {
synchronized (this) {
}

}

More that can go wrong

• What happens if you have two things
that do this - deadlock

public void doSomething() {

Synchronized (a) {

Synchronized (b) {

// code

} }

}

public void doOther() {

Synchronized (b) {

Synchronized (a) {

// code

} }

}

How does Java handle Threads?

• Subclass java.lang.Thread, or
implement java.lang.Runnable.

• After you instantiate a thread, it is in
the ready state.

• To start running a Thread, call the start
method on it.

How does Java handle them? (cont’d)

• To implement Runnable, you need to
have a method that override
public void run();

• This is the method that implements the
running section of the thread life-cycle.

• The thread dies (stops) when the run
method terminates.

How does Java handle them? (cont’d)

• The run method may be interrupted at
any time by the operating system and
put into the interrupted state, but that’s
not something you really need to
handle.

How does Java handle them? (cont’d)

• Run methods generally look like:
public class SomeThread extends
Thread {

public void run() {
while (notDone) {…}

}
public void finish() {

notDone = false;
}

}

Thread examples

• Test: Ten threads printing their name
three times.

• Test2: Main thread joins printing
threads.

• Test3: Each thread yields after
printing.

• Test4: Printing threads yield randomly.

Advanced Thread Features

• All Java Threads have a priority. If you
want a thread to run more relative to
other threads, give it a higher priority.

• Threads can be grouped in
ThreadGroup objects

• Test7: Two groups of threads
• Test8: Printing threads with priority

Why would I use them?

• Most advance programs rely on Threads
for various tasks.

• ThreadLister Example
• 2 cases:

– When you want to be doing 2 different
things simultaneously.

– When you have a large problem that can
be broken up and solved in smaller
sections, or large I/O bound processes.

Inter-Thread Communication

• Sometimes one thread may be
interested in the activities of another.
Or, one could have a functional
dependency on another.
– Reading from a file or over a network?
– Waiting for a given thread to return a

result.
– Polling (Busy Waiting) vs. Notification
– BadConsumer Example

Waiting for notification

• As defined in object, every object has a
wait(), notify(), and notifyAll() method.
– These should never be overridden

• They can only be called from inside
synchronized blocks, and they only
effect other threads in synchronized
blocks which are synchronized on the
same object.

wait() (cont’d)

• When a thread enters a wait state, it does
nothing until it is notified by another thread.

• It also gives up it’s lock on the object when
wait is called.

public synchronized blah() {
wait();
… // do something

}

notify()

• To awaken a thread, a different thread
which has a lock on the same object
must call notify.

• When notify is called, the block that
had the lock on the object continues to
have it’s lock it releases it.
– Then a thread is awakened from its wait()

and can grab the lock and continue
processing.

notify() (cont’d)

• Note that you don’t specify what is
being awoken in notify(). If there are
more than 1 thread waiting on the
same condition, you have no control of
which awakens.

• notify() only awakens 1 thread.
• notifyAll() awakens all threads.

notifyAll() (cont’d)

• There are two versions - notify() and
notifyAll().

• Notify is safe only under 2 conditions:
– When only 1 thread is waiting, and thus

guaranteed to be awakened.
– When multiple threads are waiting on the

same condition, and it doesn’t matter
which one awakens.

• In general, use notifyAll()

Break?

• Is it time for a break?
• I hope so.

java.io Abstract Classes

• There are 4 abstract classes for java.io
that are very analogous to one another,
but they do slightly different things.
– Reader
– Writer
– InputStream
– OutputStream

Reader/Writer

• Used to read and write text.
• They are very nice because they handle

unicode character conversion for you.
• Methods provided:

– int read()
– int read(char[] buf)
– int read(char[] buf, int offset, int len)

InputStream/OutputStream

• Used to read and write everything else
• Methods provided:

– int read()
– int read(byte[] buff)
– int read(byte[] buff, int offset, int len)

• In general, for every read method,
there is a write method.

File Input and Output

• Something useful !!!
• FileReader/Writer and

FileInputStream/OutputStream
• In general use the readers and writers

for text files, and streams for when you
don’t know what may be in the files.

• Example

cat.java notes

• Separate Exception checking
• read() returns -1 when at the end of

the file.
• Reading and writing are always done

inside try/catch statements.
– Why?

• I used the 0-parameter read, but ones
with arrays work faster.

cat2.java

• BufferedReader is nice for its readLine()
method.

• Note: Wrapping streams/readers is not
quite like calling a copy constructor.
– Since any type of reader/stream can be

buffered, after a stream is created with a
certain source, it is passed to a constructor
for use of that class’s special properties.

Wrapping Streams/Readers

• Streams/Readers extend their parent
classes with more complex ways to
read/write data than the 3 basic
read/write methods

• BufferedReader is a wrapper that allows
lines of data to be read at a time.
Internally, it’s just using the 3 basic
read/write methods.

Wrapping (cont’d)

• What’s the big deal?
• By wrapping streams, functionality can

be added easily to any I/O operation to
and destination.

Specialized Wrappers
• Buffering can be done for every stream.
• You can filter any I/O stream to provide a

layer between input and output.
• Data of different primitive types can be

read/written with DataInputStreams.
• PrintStream is used for terminal type textual

representation of data.
• There are I/O wrappers for arrays and Strings

as well.

More specialized wrappers

• There are pipes to allow communication
between threads

• There are additional packages
java.util.zip and java.util.jar to read and
write zip and jar files, using the same
I/O paradigm.

• Gzip example

What to notice from gzip.java

• Streams can be wrapped several levels.
• References are declared outside the

try/catch block, and instantiated inside.
• We’re still using basic read/write

methods, but they work well with
buffers.

• All streams should ALWAYS be closed
separately.

More complex exception handling

• Finally clause - code in it is always run,
irregardless of if an exception is thrown
or not.
– Any code you want to run no matter what

should be there (eg closing streams)

Object Serialization

• Wouldn’t it be nice to be able to just
write or read an entire object at a time,
and not worry about the underlying
messy parts?

• All you have to do is implement
java.io.Serializable.

• That’s It! Done!

Object Serialization (cont’d)

• writeObject() will throw an Error if the
object passed to it is not Serializable.

• You can control serialization by
implementing the Externalizable
interface.

• readObject() returns something of type
Object, so it needs to be cast.

Object Serialization (cont’d)

• If a field is transient, it’s value is not
persistent when the object is serialized.
– This is useful if your object has members

that are not necessary for the object to be
reconstructed.

• Overall, this is very useful for high-level
object storage.

java.io.File

• The File class is very useful for
information about files and the directory
structure.

• Constructer takes a String for the name
• Useful methods:

– .exists()
– .isDirectory()
– .listFiles() - Lists the files if it’s a directory

java.io.File (cont’d)

• .canRead() / .canWrite() - check
permissions

• File.listRoots() - returns an array of the
roots of a file system.

• .length()
• .delete()
• Look in the documentation for the rest.

java.io.RandomAccessFile

• Not a stream file.
• There is a file “pointer” which you can use to

read and write to random place in the file.
• You can read and write only primitive data

types - writeByte(), writeInt(), writeBoolean()
• It’s faster to jump between points in the file,

than search an entire stream file.

