
1
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

UDP/IP in JavaUDP/IP in Java

Based on Java Network
Programming and Distributed

Computing

2
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

UDP AdvantagesUDP Advantages

• Less overhead (no connection
establishment)

• More efficient (no guaranteed delivery)
• Real-time applications (no error

checking or flow-control)
• E.g., weather, time, video, audio, games

• Data reception from more than one
machine

3
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Internet AddressesInternet Addresses

•java.net.InetAddress class

• You get an address by using static methods:

ad = InetAddress.getByName(hostname);

myAddress = InetAddress.getLocalHost();

4
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Printing Internet AddressesPrinting Internet Addresses

• You get information from an
InetAddress by using methods:

ad.getHostName();
ad.getHostAddress();

• Example.

5
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

UDP Sockets ProgrammingUDP Sockets Programming

• Sending/Receiving data.
•java.net.DatagramPacket class

• Creating UDP sockets.
• Client
• Server
•java.net.DatagramSocket class

6
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Creating a UDP packetCreating a UDP packet

// to receive data from a remote machine
DatagramPacket packet =
new DatagramPacket(new byte[256], 256);

// to send data to a remote machine
DatagramPacket packet =
new DatagramPacket(new byte[128], 128,

address, port);

7
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Creating UDP socketsCreating UDP sockets

• A UDP socket can be used both for
reading and writing packets.

• Write operations are asynchronous;
however, read operations are blocking.

• Since there is no guaranteed delivery, a
single-threaded application could stall.

8
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Creating UDP SocketsCreating UDP Sockets

// A client datagram socket:
DatagramSocket clientSocket =
new DatagramSocket();

// A server datagram socket:
DatagramSocket serverSocket =
new DatagramSocket(port);

9
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Listening for UDP PacketsListening for UDP Packets

// create datagram packet
. . .

// create datagram server socket
. . .

boolean finished = false;
while (! finished) {
serverSocket.receive (packet);
// process the packet

}
serverSocket.close();

10
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Processing UDP PacketsProcessing UDP Packets

ByteArrayInputStream bin =
new ByteArrayInputStream(

packet.getData());
DataInputStream din =
new DataInputStream(bin);

// read the contents of the packet

11
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Sending UDP PacketsSending UDP Packets

// create datagram packet
. . .

// create datagram client socket
. . .

boolean finished = false;
while (! finished) {
// write data to packet buffer
clientSocket.send (packet);
// see if there is more to send

}

12
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Sending UDP packetsSending UDP packets

• When you receive a packet, the ip and
port number of the sender are set in the
DatagramPacket.

• You can use the same packet to reply,
by overwriting the data, using the
method:
•packet.setData(newbuffer);

13
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

NonNon--blocking I/O receiving blocking I/O receiving
UDP packetsUDP packets
• You can set a time-out in milliseconds

to determine how long a read operation
blocks, before throwing an exception.
•socket.setSoTimeout(duration);

• If the duration given in milliseconds is
exceeded, an exception is thrown:
•java.io.InterruptedException

14
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Typical UDP client codeTypical UDP client code

• Create UDP socket to contact server
(with a given hostname and service port
number)

• Create UDP packet.
• Call send(packet), sending request to

the server.
• Possibly call receive(packet) (if we

need a reply).

15
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Typical UDP Server codeTypical UDP Server code

• Create UDP socket listening to a well
known port number.

• Create UDP packet buffer
• Call receive(packet) to get a request,

noting the address of the client.
• Process request and send reply back

with send(packet).

16
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

DebuggingDebugging

• Debugging UDP can be difficult.
• Write routines to print out addresses.
• Use a debugger.
• Include code that can handle

unexpected situations.

17
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Asynchronous ErrorsAsynchronous Errors

• What happens if a client sends data to a
server that is not running?
• ICMP “port unreachable” error is

generated by receiving host and send to
sending host.

• The ICMP error may reach the sending
host after send() has already returned!

• The next call dealing with the socket could
return the error.

