Motivation, Terminology, Layered systems (and other random stuff)
History and Motivation

- First stored-program computer: 1949
- ARPANet 56Kbps: 1970
- TCP/IP: 1972
- IBM Personal Computer: 1981
- Local Area Networks: 1982
- World-Wide Web: 1989
- Java: 1995
History and Motivation

- Early computers were highly centralized.
 - Single point of failure
 - User has to “go to” the computer.
- Proliferation of low cost computers made it possible to get past these 2 primary disadvantages (with a network).
Motivation

- Sharing of resources is more efficient
- Price/Performance
- Use each piece of equipment for what it is best at
- Centralize administration
- Computers as communication tools
Rates of Growth

- Moore’s Law
 - “Number of transistors in chips doubles every 18 months”.
 - ⇒ Every 10 years, processors are 100 times more powerful.

- Gilder’s Law
 - “Bandwidth grows at least three times faster than computer power”.
 - ⇒ Assuming bandwidth doubles every 12 months; every 10 years, it is 1000 times better.
Computer Networks are now everywhere

- PCs <-> Mainframes
- Automated Tellers
- Embedded Systems
- Communications Systems
- The Internet
Networked Computers - Traditional Uses

- Communication (email)
- File exchange, disk sharing
- Sharing peripherals (printers, tape drives)
- Remote execution
New(er) Uses for Networked Computers

- Entertainment, distributed games
 - MP3s!
- Commerce
 - Automation of business processes
- Collaborative computing
 - Homework Submission
- Worldwide Computing
Wide variety of types of networks

- circuit switched
 - telephone system

- packet switched:
 - The Internet (TCP/IP)
Network Models

- Using a formal model allows us to deal with various aspects of Networks abstractly.
- We will look at a popular model (OSI reference model).
- The OSI reference model is a layered model.
Layering

- Divide a task into pieces and then solve each piece independently (or nearly so).
- Establishing a well defined interface between layers makes porting easier.
- Major Advantages:
 - Code Reuse
 - Extensibility
Layering Example: Federal Express

- Letter in envelope, address on outside
- FedEx guy adds addressing information, barcode.
- Local office drives to airport and delivers to hub.
- Sent via airplane to nearest city.
- Delivered to right office
- Delivered to right person
FedX Layers

Letter

Addressed Envelope

Netprog 2002

Network Technology
Layered Software Systems

- Network software
- Operating systems
- Windowing systems
Unix is a Layered System

Applications
Libraries
System Calls
Kernel
The International Standards Organization (ISO) proposal for the standardization of the various protocols used in computer networks (specifically those networks used to connect open systems) is called the Open Systems Interconnection Reference Model (1984), or simply the OSI model.
Although the OSI model is a just a model (not a specification), it is generally regarded as the most complete model (as well it should be - nearly all of the popular network protocol suites in use today were developed before the OSI model was defined).
Although this course is about network programming (and not about networking in general), an understanding of a complete network model is essential.

We will look at the OSI Reference Model in detail.
OSI 7 Layer Model:

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data-Link
1 Physical

High level protocols
Low level protocols
Simplified Network Model

- Process
- Transport
- Network
- Data Link

Interface Protocols

Peer-to-peer Protocols

Netprog 2002 Network Terminology
What’s a Protocol?

- An agreed upon convention for communication.
 - both endpoints need to understand the protocol.
- Protocols must be formally defined and unambiguous!
- We will study lots of existing protocols and perhaps develop a few of our own.
Interface and Peer-to-peer Protocols

- Interface protocols describe the communication between layers on the same endpoint.
- Peer-to-peer protocols describe communication between peers at the same layer.
Thought Exercise

- Come up with an example of a layered system.

- Describe the interface and peer-to-peer protocols for your example.
Programs & Processes

- A program is an executable file.
- A process or task is an instance of a program that is being executed.
- A thread is a light-weight process.
- A single program can generate multiple processes or contain multiple threads.
Client - Server

- A server is a process - not a machine!
- A server waits for a request from a client.
- A client is a process that sends a request to an existing server and (usually) waits for a reply.
Client - Server Examples

- Server returns the time-of-day.
- Server returns a document.
- Server prints a file for client.
- Server does a disk read or write.
- Server records a transaction.
Servers

- Servers are generally more complex (more interesting).
- 2 Basic types of servers:
 - *Iterative* - server handles one client at a time.
 - *Concurrent* - server handles many clients at a time.
- We will study the differences later.
Peer-to-peer Computing

- Clients are also servers, a.k.a. servents.
- Decentralized control.
- E.g., Gnutella, Freenet.
Java and Multithreading

- In Java, it is possible to create multithreaded programs.
- The `java.lang` package contains a `Thread` class.
- The `java.lang.Object` class contains internal locks for thread synchronization.