
SALSA: Language and Architecture for
Widely Distributed Actor Systems.

Carlos Varela, cvarela@cs.rpi.edu
Abe Stephens, stepha@cs.rpi.edu

Department of Computer Science
Rensselaer Polytechnic Institute

Troy NY, USA
http://www.cs.rpi.edu/wwc/SALSA/

AAMAS 2002, University of Bologna Italy.

http://www.cs.rpi.edu/wwc/salsa

Actor Fundamentals

• Introduced by C. Hewitt (77), further
refined and developed by G. Agha et al
(85-present)

• An Actor encapsulates a thread of
execution with a collection of objects.

• Only the actor’s thread may access its
objects directly and change their state.

• Provides for implicit object
synchronization.

http://www.cs.rpi.edu/wwc/salsa

Actor Fundamentals

• Actors communicate by sending
messages to each other.

• Messages are sent asynchronously.
• Messages are not necessarily processed

in the order they are sent or received.

http://www.cs.rpi.edu/wwc/salsa

Actor Implementation

collection of objects

mailbox

Thread

http://www.cs.rpi.edu/wwc/salsa

Worldwide Computing

• Distributed computing over the Internet.
• Access to large number of processors

offsets slow communication and reliability
issues.

• Seeks to create a platform for many
applications.

http://www.cs.rpi.edu/wwc/salsa

World-Wide Computer

• Worldwide Computing platform
implementation.

• Provides a runtime middleware for actors.
• Includes support for naming services.
• Message sending protocol.
• Support for actor migration.

http://www.cs.rpi.edu/wwc/salsa

Remote Message Sending Protocol

• Messages between actors are sent using
RMSP.

• RMSP is implemented using Java Object
Serialization.

• Protocol used for both message sending
and actor migration.

• When an actor migrates, its location
changes but its name does not.

http://www.cs.rpi.edu/wwc/salsa

WWC Theaters

• Theater programs provide execution
location for actors.

• Provide a layer beneath actors for
message passing.

• Example location:
rmsp://wwc.cs.rpi.edu/calendarInstance10

Theater address and
port. Actor location.

http://www.cs.rpi.edu/wwc/salsa

Environmental Actors

• Theaters may provide environmental
actors.

• Perform actions specific to the theater and
are not mobile.

• Include standard input and standard
output actors.

http://www.cs.rpi.edu/wwc/salsa

Universal Naming

• Consists of human readable names.
• Provides location transparency to actors.
• Name to location mappings efficiently

updated as actors migrate.

http://www.cs.rpi.edu/wwc/salsa

Universal Actor Naming

• UAN servers provide mapping between
static names and dynamic locations.
– Example:

uan://wwc.cs.rpi.edu/stepha/calendar
Name server

address and port. Actor name.

http://www.cs.rpi.edu/wwc/salsa

Universal Actors

• Universal Actors extend the actor model
by associating a location and a universal
name with the actor.

• Universal Actors may migrate between
theaters and update the name server.

http://www.cs.rpi.edu/wwc/salsa

Universal Actor Implementation

collection of objects

mailbox

Thread

UAN UAL

Theater

http://www.cs.rpi.edu/wwc/salsa

Simple Actor Language System
and Architecture

• SALSA is an actor oriented programming
language.

• Supports Universal Naming (UAN & UAL).
• Primitives for

– Message sending.
– Migration.
– Coordination.

• Closely tied to WWC platform.

http://www.cs.rpi.edu/wwc/salsa

SALSA Basics

• Programmers define behaviors for actors.
• Messages are sent asynchronously.
• Messages are modeled as potential

method invocations.
• Continuation primitives are used for

coordination.

http://www.cs.rpi.edu/wwc/salsa

Message Sending

TravelAgent a = new TravelAgent();

a<-book(flight);

http://www.cs.rpi.edu/wwc/salsa

Remote Message Sending

• Obtain a remote actor reference by name.
TravelAgent a = new TravelAgent();
a<-getReferenceByName(“uan://myhost/ta”) @

a<-printItinerary();

• Obtain a remote actor reference by
location.
a<-getReferenceByLocation(“rmsp://myhost/agent1”) @

a<-printItinerary();

http://www.cs.rpi.edu/wwc/salsa

Migration

• Creating a new Actor an migrating it to a
remote theater.
TravelAgent a = new TravelAgent();

a<-bind(“uan://myhost/ta”, “rmsp://myhost/agent1”) @
a<-book(flight);

• Obtaining a remote actor reference and
migrating it.
a<-getReferenceByName(“uan://myhost/ta”) @

a<-migrate(“rmsp://yourhost/travel”) @
a<-printItinerary();

http://www.cs.rpi.edu/wwc/salsa

Token Passing Continuation

• Insures that each message in the expression is
sent after the previous message has been
processed. It also allows that the return value of
one message invocation may be used as an
argument for a later invocation in the
expression.
– Example:

a1<-m1() @ a2<-m2(token);
Send m1 to a1 and then after m1 finishes, send the result with
m2 to a2.

http://www.cs.rpi.edu/wwc/salsa

Join Continuation

• Provides a mechanism for synchronizing
the processing of a set of messages.

• Set of results is sent along as a token.
– Example:

Actor[] actors = { searcher0, searcher1,
searcher2, searcher3 };

join(actors<-find(phrase)) @
resultActor<-output(token);

Send the find(phrase) message to each actor in
actors[] then after all have completed send the result to
resultActor with an output(…) message.

http://www.cs.rpi.edu/wwc/salsa

Acknowledged Multicast

join(a1<-m1(), a2<-m2, a3<-m3(), …) @
cust<-n(token);

http://www.cs.rpi.edu/wwc/salsa

Lines of Code Comparison

31100168Acknowledged Multicast
SALSAFoundryJava

http://www.cs.rpi.edu/wwc/salsa

First Class Continuation

• Enable actors to delegate computation of
a third party independently of the
processing context.

• Unimplemented in current release.

http://www.cs.rpi.edu/wwc/salsa

SALSA and Java

• SALSA source files are compiled into Java source files
before being compiled into Java byte code.

• SALSA programs may take full advantage of Java API.

http://www.cs.rpi.edu/wwc/salsa

SALSA Language Package

http://www.cs.rpi.edu/wwc/salsa

Hello World Example
module demo;

behavior HelloWorld {

void act(String[] argv) {

standardOutput<-print("Hello") @
standardOutput<-print("World!");

}

}

http://www.cs.rpi.edu/wwc/salsa

Hello World Example

• The act(String[] args) message
handler is similar to the main(…) method
in Java and is used to bootstrap SALSA
programs.

http://www.cs.rpi.edu/wwc/salsa

Migration Example
module demo;

behavior Migrate {

void print() {

standardOutput<-println("Migrate actor just migrated here.");
}

void act(String[] args) {

if (args.length != 3) {
standardOutput<-println(“Usage: java migration.Migrate “ +

“<uan> <ual1> <ual2>");

return;
}

bind(args[0], args[1]) @
print() @
migrate(args[2]) @
print();

}

};

http://www.cs.rpi.edu/wwc/salsa

Migration Example

• The program must be bound to a valid
name and location.

• After binding the actor sends the print
message to itself before migrating to the
second theater and sending the message
again.

http://www.cs.rpi.edu/wwc/salsa

Compilation
$ java SALSACompiler demo/Migrate.SALSA
SALSA Compiler Version 0.3: Reading from file demo/Migrate.SALSA . . .
SALSA Compiler Version 0.3: SALSA program parsed successfully.
SALSA Compiler Version 0.3: SALSA program compiled successfully.
$ javac demo/Migrate.java
$ java demo.Migrate
Usage: java migration.Migrate <uan> <ual> <ual>
$

• Compile Migrate.SALSA file into
Migrate.java.

• Compile Migrate.java file into Migrate.class.
• Execute Migrate

http://www.cs.rpi.edu/wwc/salsa

Migration Example

theater 1 theater 2

The actor will print "Migrate actor just migrated here."
at theater 1 then theater 2.

UAN Server

http://www.cs.rpi.edu/wwc/salsa

World Migrating Agent Example

150-160 ms
240-250 ms
3-7 s
25-30 s

LAN minimal actor migration
LAN 100Kb actor migration
WAN minimal actor migration
WAN 100Kb actor migration

148 us
30-60 ms
2-3 s

Local message sending
LAN message sending
WAN message sending

386usLocal actor creation

Sparc 20Solaris 2.6 JDK 1.1.6Tokyo, JapanSolar.isr.co.jp

Pentium II 350MhzLinux 2.2.5 JDK
1.2pre2

Paris, FranceVulcain.ecoledoc.lip6.fr

Ultra 2Solaris 2.5.1 JDK 1.1.6Urbana IL, USAyangtze.cs.uiuc.edu

ProcessorOS/JVMLocationHost

http://www.cs.rpi.edu/wwc/salsa

Mean Calculation Example

• DataSource actor assigns tasks to
Worker actors.

• Worker actors on remote theaters
calculate result and send it to a
Supervisor actor.

• Coordinates between many Worker
actors.

http://www.cs.rpi.edu/wwc/salsa

Mean Calculation Example

theater 1

theater 2
UAN Server

theater 3

theater 4

DataSource

Supervisor

Worker

Worker

Worker

http://www.cs.rpi.edu/wwc/salsa

Web Search Example

• Manager actor multicasts search queries
between distributed Indexer actors.

• Mobile Indexer actors create word lists
from web sites.

