TCP/IP

Transmission Control Protocol / Internet
Protocol

Based on Notes by D. Hollinger

Netprog 2002 TCP/IP

Topics

IPVv6
TCP

Java TCP Programming

Netprog 2002 TCP/IP

IPv6 availability

Generally available with (new) versions
of most operating systems.
® BSD, Linux 2.2 Solaris 8

An option with Windows 2000/NT
Most routers can support IPV6
Supported in J2SDK/JRE 1.4

Netprog 2002 TCP/IP

IPv6 Design Issues

Overcome IPv4 scaling problem
® lack of address space.

Flexible transition mechanism.
New routing capabilities.
Quality of service.

Security.

Ability to add features in the future.

Netprog 2002 TCP/IP

|IPv6 Headers

Simpler header - faster processing by
routers.

® No optional fields - fixed size (40 bytes)
® No fragmentation fields.
® No checksum

Support for multiple headers
® more flexible than simple “protocol” field.

Netprog 2002 TCP/IP

4 for IPv4

IPv4 Header

1 byte 1 byte 1 byte >|< 1 byte —»|
VERS \ Fragment Length |
Datagram ID \ Fragment Offset |
TTL \ Header Checksum
Source Address
Destination Address
Options (if any)

Data

Netprog 2002 TCP/IP

6 for IPv6

|IPv6 Header

1 byte —>|<— 1 byte —>|<— 1 byte —>|<— 1 byte —>|
VERS|PRIO|] ~~ Flowlabel

Payload Length Next Header Hop Limit

Netprog 2002 TCP/IP

|IPvo Header Fields

VERS: 6 (IP version number)
Priority: will be used in congestion control

Flow Label: experimental - sender can label a
seguence of packets as being in the same
flow.

Payload Length: number of bytes In

everything following the 40 byte header (up to
64Kb), or O for a Jumbogram (up to 4GDh).

Netprog 2002 TCP/IP

|IPvo Header Fields

Next Header is similar to the IPv4
“protocol” field - indicates what type of
header follows the IPv6 header.

Hop Limit is similar to the IPv4 TTL field
(but now It really means hops, not time).

Netprog 2002 TCP/IP

Extension Headers

Routing Header - source routing

Fragmentation Header - supports
fragmentation of IPv6 datagrams.

Authentication Header
Encapsulating Security Payload Header

Netprog 2002 TCP/IP
10

IPv6 Addresses

128 bits - written as eight 16-bit hex

numbers.
5f 1b: df 00: ce3e: e200: 0020: 0800: 2078: e3e3

High order bits determine the type of
address.

Netprog 2002 TCP/IP

11

IPV6

Aggregate Global Unicast
Address

3 13 32 16 64
010 TLAID| NLAID [SLAID[Interface ID

TLA: top-level aggregation (provider)
NLA: next-level (subscriber)
SLA: site-level (subnet)

Interface ID is (typically) based on hardware
MAC address

Netprog 2002 TCP/IP

12

IPv4-Mapped IPv6 Address

IPv4-Mapped addresses allow a host
that support both IPv4 and IPv6 to
communicate with a host that supports
only IPv4.

The IPv6 address Is based completely
on the IPv4 address.

Netprog 2002 TCP/IP
13

IPv4-Mapped IPv6 Address

80 bits of Os followed by 16 bits of ones,
followed by a 32 bit IPv4 Address:

0000 ... 0000 FFFF| [IPv4 Address

80 bits 16 bits 32 bhits

Netprog 2002 TCP/IP
14

Works with DNS

An IPv6 application asks DNS for the
address of a host, but the host only has
an IPv4 address.

DNS creates the IPv4-Mapped IPv6
address automatically.

Kernel understands this is a special
address and really uses IPv4
communication.

Netprog 2002 TCP/IP
15

IPv4-Compatible IPv6
Address

An IPv4 compatible address allows a
host supporting IPv6 to talk IPv6 even If
the local router(s) don’t talk IPv6.

IPv4 compatible addresses tell endpoint
software to create a tunnel by
encapsulating the IPv6 packet in an
IPv4 packet.

Netprog 2002 TCP/IP

16

IPv4-Compatible
IPv6 Address

80 hits of Os followed by 16 bits of Os,
followed by a 32 bit IPv4 Address:

0000 . .. 0000 0000 IPv4 Address

80 bits 16 bits 32 bhits

Netprog 2002 TCP/IP

17

Tunneling
(done automatically by kernel when
IPv4-Compatible IPv6 addresses used)

IPV6 IPV6G

Host Host

/

IPv4 Routers

IPv4 Datagram

. IPv6 Datagram

Netprog 2002 TCP/IP

18

IPV6 In Java 1.4

Inet6Address class

® :: corresponds to 0.0.0.0 (unspecified) in IPv4

® ::1 corresponds to 127.0.0.1 (loopback) in IPv4
® . ffff:w.x.y.z IPv4-mapped address

® ::w.x.y.z to tunnel IPv6 packets over IPv4 routing

For detalls, see:
http://java.sun.com/j2se/1.4/docs/quide/net/ipv6 _guide/

Netprog 2002 TCP/IP
19

TCP
Transmission Control Protocol

® TCP is an alternative transport layer
protocol over IP.

® TCP provides:
® Connection-oriented
®Reliable
® Full-duplex
® Byte-Stream

Wi

Netprog 2002 TCP/IP

20

Connection-Oriented

Connection oriented means that a
virtual connection is established
before any user data Is
transferred.

If the connection cannot be
established - the user program is
notified.

If the connection Is ever
Interrupted - the user program(s)
IS notified.

Netprog 2002 TCP/IP

21

Reliable

Reliable means that every
transmission of data IS

acknowledged by the recelver.

If the sender does not receive
acknowledgement within a
specified amount of time, the
sender retransmits the data.

Netprog 2002 TCP/IP

22

Byte Stream

Stream means that the connection
IS treated as a stream of bytes.

The user application does not
need to package data in individual
datagrams (as with UDP).

Netprog 2002 TCP/IP

23

Buffering

TCP Is responsible for buffering
data and determining when it Is
time to send a datagram.

It Is possible for an application to
tell TCP to send the data It has
buffered without waiting for a buffer
to fill up.

Netprog 2002 TCP/IP

24

Full Duplex

TCP provides transfer in both
directions.

To the application program these
appear as 2 unrelated data streams,
although TCP can piggyback control
and data communication by providing
control information (such as an ACK)
along with user data.

Netprog 2002 TCP/IP
PAS

TCP Ports

Interprocess communication via
TCP Is achieved with the use of
ports (just like UDP).

UDP ports have no relation to TCP
ports (different name spaces).

Netprog 2002 TCP/IP

26

TCP Segments

The chunk of data that TCP asks IP
to deliver is called a TCP segment.

Each segment contains:

® data bytes from the byte stream

® control information that identifies the
data bytes

Netprog 2002 TCP/IP

27

TCP Segment Format
|<—1byte >|< 1 byte >|< 1 byte >|< 1byte—>|

Source Port Destination Port
Sequence Number
Acknowledgment Number
offset Control Window
Checksum Urgent Pointer

Options (if any)

Data

TCP Lingo

When a client requests a connection it
sends a “SYN” segment (a special TCP
segment) to the server port.

SYN stands for synchronize. The SYN
message includes the client’s ISN.

ISN Is Initial Sequence Number.

Netprog 2002 TCP/IP

29

More...

Every TCP segment includes a
Sequence Number that refers to the first
byte of data included in the segment.

Every TCP segment includes an
Acknowledgement Number that
Indicates the byte number of the next
data that Is expected to be received.

® All bytes up through this number have
already been received.

Netprog 2002 TCP/IP
30

And more...

There are a bunch of control flags:
® URG: urgent data included.

® ACK: this segment is (among other things)
an acknowledgement.

® RST: error — connection must be reset.

® SYN: synchronize Sequence Numbers
(setup)

® FIN: polite connection termination.

Netprog 2002 TCP/IP
31

And more...

MSS: Maximum segment size (A TCP
option)

Window: Every ACK includes a Window
field that tells the sender how many
bytes it can send before the receiver will
have to toss it away (due to fixed buffer
size).

Netprog 2002 TCP/IP
32

TCP Connection Creation

Programming details later - for now we
are concerned with the actual
communication.

A server accepts a connection.
® Must be looking for new connections!

A client requests a connection.
® Must know where the server is!

Netprog 2002 TCP/IP
33

Client Starts

A client starts by sending a SYN
segment with the following information:

® Client’s ISN (generated pseudo-randomly)
® Maximum Receive Window for client.

® Optionally (but usually) MSS (largest
datagram accepted).

® No payload! (Only TCP headers)

Netprog 2002 TCP/IP
34

Server Response

When a waiting server sees a new
connection request, the server sends
back a SYN segment with:

® Server’s ISN (generated pseudo-randomly)
® Request Number is Client ISN+1

® Maximum Receive Window for server.

® Optionally (but usually) MSS

® No payload! (Only TCP headers)

Netprog 2002 TCP/IP
35

Finally

When the Server’'s SYN Is received, the
client sends back an ACK with:

® Acknowledgment Number is Server’s
ISN+1

Netprog 2002 TCP/IP

36

Client

O
ISN=Y ACK=X+1

\‘ ACK=Y+1 e

Netprog 2002 TCP/IP

Server

37

TCP 3-way handshake

0 Client: “I want to talk, and I'm starting with byte
number X”.

@ Server: “OK, I'm here and I'll talk. My first byte
will be called number Y, and | know your first
byte will be number X+1".

e Client: “Got it - you start at byte number Y+1".

Q Bill: “Monica, I'm afraid I'll syn and byte your

1)
ack
Netprog 2002 TCP/IP

38

Why 3-Way?

Why is the third message necessary?

HINTS:

® TCP is a reliable service.
® |P delivers each TCP segment.
® |P is not reliable.

Netprog 2002 TCP/IP

39

TCP Data and ACK

Once the connection Is established,
data can be sent.

Each data segment includes a

sequence number identifying the first
byte in the segment.

Each segment (data or empty) includes
a request number indicating what data
has been received.

Netprog 2002 TCP/IP
40

Buffering

Keep in mind that TCP Is part of the
Operating System. The O.S. takes care
of all these details asynchronously.

The TCP layer doesn’t know when the
application will ask for any received
data.

CP buffers incoming data so it’s ready
when we ask for It.

Netprog 2002 TCP/IP

41

TCP Buffers

Both the client and server allocate
buffers to hold incoming and outgoing
data

® The TCP layer does this.

Both the client and server announce
with every ACK how much buffer space
remains (the Window field in a TCP

segment).

Netprog 2002 TCP/IP
42

Send Buffers

The application gives the TCP layer
some data to send.

The data Is put in a send buffer, where it
stays until the data is ACK'd.

The TC
the app
buffer s

P layer won't accept data from
ication unless (or until) there Is

pace.

Netprog 2002 TCP/IP
43

ACKS

A receiver doesn’t have to ACK every
segment (it can ACK many segments
with a single ACK segment).

Each ACK can also contain outgoing
data (piggybacking).

If a sender doesn’t get an ACK after
some time limit, it resends the data.

Netprog 2002 TCP/IP
44

TCP Segment Order

Most TCP implementations will accept
out-of-order segments (if there is room
In the buffer).

Once the missing segments arrive, a
single ACK can be sent for the whole
thing.

Remember: IP delivers TCP segments,
and IP Is not reliable - IP datagrams can
be lost or arrive out of order.

Netprog 2002 TCP/IP

45

Termination

The TCP layer can send a RST
segment that terminates a connection If
something Is wrong.

Usually the application tells TCP to

terminate the connection politely with a
FIN segment.

Netprog 2002 TCP/IP
46

FIN

Either end of the connection can Initiate
termination.

A FIN Is sent, which means the
application is done sending data.

The FIN is ACK'd.
ne other end must now send a FIN.
nat FIN must be ACK'd.

Netprog 2002 TCP/IP
47

Appl

FIN
SN=X

ACK=X+1 6

FIN
SN=Y

IR

ACK=Y+1 @

Netprog 2002 TCP/IP

48

TCP Termination
0 Appl: “I have no more data for you”.

e App2: “OK, | understand you are done sending.”
dramatic pause...

e App2: “OK - Now I’'m also done sending data”.

a Appl: “Roger, Over and Out, Goodbye,
Hastalavista Baby, Adios, It's been real ...”

camera fades to black ...
Netprog 2002 TCP/IP

49

TCP TIME_WAIT

Once a TCP connection has been
terminated (the last ACK sent) there Is
some unfinished business:

® What if the ACK is lost? The last FIN will
be resent and it must be ACK'd.

® What if there are lost or duplicated
segments that finally reach the destination
after a long delay?

TCP hangs out for a while to handle
these situations.

Netprog 2002 TCP/IP

50

TCP Sockets Programming

Creating a passive mode (server)
socket.

Establishing an application-level
connection.

Sending/receliving data.
Terminating a connection.

Netprog 2002 TCP/IP

51

Establishing a passive mode
TCP socket

Passive mode:
® Address already determined.

® Tell the kernel to accept incoming connection
requests directed at the socket address.

® 3-way handshake

® Tell the kernel to queue incoming connections
for us.

Netprog 2002 TCP/IP

52

Accepting an incoming
connection.

Once we start listening on a socket, the
O.S. will gueue incoming connections

® Handles the 3-way handshake
® Queues up multiple connections.

When our application iIs ready to handle
a new connection, we need to ask the
O.S. for the next connection.

Netprog 2002 TCP/IP
53

Terminating a TCP connection

Either end of the connection can call the
cl ose() system call.

If the other end has closed the
connection, and there is no buffered
data, reading from a TCP socket returns
O to Indicate EOF.

Netprog 2002 TCP/IP
54

Client Code

TCP clients can connect to a server,
which:

® takes care of establishing an endpoint
address for the client socket.

® don’t need to call bind first, the O.S. will take
care of assigning the local endpoint address
(TCP port number, IP address).
® Attempts to establish a connection to the
specified server.

® 3-way handshake

Netprog 2002 TCP/IP
55

Reading from a TCP socket

By default r ead() will block until data Is
available.
Reading from a TCP socket may return

less than max bytes (whatever Is
available).

You must be prepared to read data 1
byte at a time!

Netprog 2002 TCP/IP
56

Writing to a TCP socket

write might not be able to write all bytes
(on a nonblocking socket).

Netprog 2002 TCP/IP

57

Metaphor for Good Relationships

Copyright Dr. Laura’s Network Programming Corp.

To succeed in relationships: N

® you need to esta
® you need to be o
® you need to esta

® you need to take

as you expect them. read might return 1 byte

o\
plish your own identity.

nen & accepting. accept ()

lish contacts. connect ()
things as they come, not

® you need to handle problems as they arise.

check for errors

Netprog 2002 TCP/IP

58

Java Sockets Programming

The package java.net provides support

for soc
Typica

Kets programming
ly you import everything defined

In this

package with:

| hport | ava. net. *;

Netprog 2002 TCP/IP

59

Classes

| net Addr ess
Socket
Ser ver Socket
Dat agr anSocket
Dat agr anPPacket

Netprog 2002 TCP/IP

60

Socket class
Corresponds to active TCP sockets only!

® client sockets
® socket returned by accept();

Passive sockets are supported by a
different class: ServerSocket

Netprog 2002 TCP/IP

61

Socket Constructors

® Constructor creates a TCP connection
to a named TCP server.

® There are a number of constructors:
Socket (I net Address server, int port),;

Socket (| net Address server, 1 nt port,
| net Address | ocal, int |ocalport);

Socket (String hostnane, int port);

Netprog 2002 TCP/IP
62

Socket Methods

voi d cl ose();

| net Addr ess get | net Address(); getpeernane
| net Addr ess get Local Address(); getsocknane
| nput St ream get | nput St reant() ;

Cut put St ream get Qut put Stream() ;

® Lots more (setting/gettting socket options,
partial close, etc.)

Netprog 2002 TCP/IP

63

Socket I/O

Socket I/O Is based on the Java I/O
support (in the package j ava. i o).

InputStream and OutputStream are
abstract classes

® common operations defined for all kinds of
InputStreams, OutputStreams...

Netprog 2002 TCP/IP

64

ServerSocket Class

(TCP Passive Socket)

Constructors:

Server Socket (I nt port);

Server Socket (1 nt port,
backl oQ) ;

Server Socket (1 nt port,
| net Addr ess bi ndAddr) ;

Netprog 2002 TCP/IP

| Nt

| nt backl og,

65

ServerSocket Methods

Socket accept();
voi d cl ose();
| net Addr ess get | net Address() ;

| nt get Local Port ();

throw | CExcepti on, SecurityException

Netprog 2002 TCP/IP

66

Sample Echo Server

TCPEchoServer.java, EchoClient.java,
GenericClient.java

Simple TCP Echo server.

Based on code from:
TCP/IP Sockets Iin Java, Java Online

Tutorial

Netprog 2002 TCP/IP

67

