
1
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP/IPTCP/IP
Transmission Control Protocol / Internet Transmission Control Protocol / Internet
ProtocolProtocol

Based on Notes by D. Hollinger

2
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TopicsTopics

• IPv6

• TCP

• Java TCP Programming

3
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv6 availabilityIPv6 availability

• Generally available with (new) versions

of most operating systems.

• BSD, Linux 2.2 Solaris 8

• An option with Windows 2000/NT

• Most routers can support IPV6

• Supported in J2SDK/JRE 1.4

4
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv6 Design IssuesIPv6 Design Issues

• Overcome IPv4 scaling problem
• lack of address space.

• Flexible transition mechanism.
• New routing capabilities.
• Quality of service.
• Security.
• Ability to add features in the future.

5
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv6 HeadersIPv6 Headers

• Simpler header - faster processing by
routers.
• No optional fields - fixed size (40 bytes)
• No fragmentation fields.
• No checksum

• Support for multiple headers
• more flexible than simple “protocol” field.

6
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv4 HeaderIPv4 Header

VERS HL
Fragment Offset

Fragment LengthService
Datagram ID FLAG

TTL Protocol Header Checksum
Source Address

Destination Address
Options (if any)

Data

1 byte1 byte 1 byte 1 byte

4 for IPv4

7
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv6 HeaderIPv6 Header

VERS PRIO
Hop Limit

Flow Label
Payload Length Next Header

1 byte1 byte 1 byte 1 byte

6 for IPv6

Source Address (128 bits - 16 bytes)

Dest. Address (128 bits - 16 bytes)

8
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv6 Header FieldsIPv6 Header Fields

• VERS: 6 (IP version number)
• Priority: will be used in congestion control
• Flow Label: experimental - sender can label a

sequence of packets as being in the same
flow.

• Payload Length: number of bytes in
everything following the 40 byte header (up to
64Kb), or 0 for a Jumbogram (up to 4Gb).

9
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv6 Header FieldsIPv6 Header Fields

• Next Header is similar to the IPv4
“protocol” field - indicates what type of
header follows the IPv6 header.

• Hop Limit is similar to the IPv4 TTL field
(but now it really means hops, not time).

10
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Extension HeadersExtension Headers

• Routing Header - source routing
• Fragmentation Header - supports

fragmentation of IPv6 datagrams.
• Authentication Header
• Encapsulating Security Payload Header

11
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv6 AddressesIPv6 Addresses

• 128 bits - written as eight 16-bit hex
numbers.
5f1b:df00:ce3e:e200:0020:0800:2078:e3e3

• High order bits determine the type of
address.

12
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv6 IPv6
Aggregate Global Aggregate Global UnicastUnicast
AddressAddress

010 TLA ID NLA ID SLA ID Interface ID

3 13 32 16 64

TLA: top-level aggregation (provider)
NLA: next-level (subscriber)
SLA: site-level (subnet)

Interface ID is (typically) based on hardware
MAC address

13
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv4IPv4--Mapped IPv6 AddressMapped IPv6 Address

• IPv4-Mapped addresses allow a host
that support both IPv4 and IPv6 to
communicate with a host that supports
only IPv4.

• The IPv6 address is based completely
on the IPv4 address.

14
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv4IPv4--Mapped IPv6 AddressMapped IPv6 Address

• 80 bits of 0s followed by 16 bits of ones,
followed by a 32 bit IPv4 Address:

0000 . . . 0000 IPv4 AddressFFFF

80 bits 32 bits16 bits

15
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Works with DNSWorks with DNS

• An IPv6 application asks DNS for the
address of a host, but the host only has
an IPv4 address.

• DNS creates the IPv4-Mapped IPv6
address automatically.

• Kernel understands this is a special
address and really uses IPv4
communication.

16
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv4IPv4--Compatible IPv6 Compatible IPv6
AddressAddress
• An IPv4 compatible address allows a

host supporting IPv6 to talk IPv6 even if
the local router(s) don’t talk IPv6.

• IPv4 compatible addresses tell endpoint
software to create a tunnel by
encapsulating the IPv6 packet in an
IPv4 packet.

17
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv4-Compatible
IPv6 Address

0000 . . . 0000 IPv4 Address0000

80 bits 32 bits16 bits

• 80 bits of 0s followed by 16 bits of 0s,
followed by a 32 bit IPv4 Address:

18
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TunnelingTunneling
(done automatically by kernel when (done automatically by kernel when
IPv4IPv4--Compatible IPv6 addresses used)Compatible IPv6 addresses used)

IPv6
Host

IPv6
Host

IPv4 Routers

IPv6 Datagram

IPv4 Datagram

19
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

IPv6 in Java 1.4IPv6 in Java 1.4

• Inet6Address class
• :: corresponds to 0.0.0.0 (unspecified) in IPv4
• ::1 corresponds to 127.0.0.1 (loopback) in IPv4
• ::ffff:w.x.y.z IPv4-mapped address
• ::w.x.y.z to tunnel IPv6 packets over IPv4 routing

• For details, see:
http://java.sun.com/j2se/1.4/docs/guide/net/ipv6_guide/

20
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCPTCP
Transmission Control ProtocolTransmission Control Protocol
• TCP is an alternative transport layer

protocol over IP.
• TCP provides:

•Connection-oriented
•Reliable
•Full-duplex
•Byte-Stream

21
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

ConnectionConnection--OrientedOriented

• Connection oriented means that a
virtual connection is established
before any user data is
transferred.

• If the connection cannot be
established - the user program is
notified.

• If the connection is ever
interrupted - the user program(s)
is notified.

22
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

ReliableReliable

• Reliable means that every
transmission of data is
acknowledged by the receiver.

• If the sender does not receive
acknowledgement within a
specified amount of time, the
sender retransmits the data.

23
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Byte StreamByte Stream

• Stream means that the connection
is treated as a stream of bytes.

• The user application does not
need to package data in individual
datagrams (as with UDP).

24
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

BufferingBuffering

• TCP is responsible for buffering
data and determining when it is
time to send a datagram.

• It is possible for an application to
tell TCP to send the data it has
buffered without waiting for a buffer
to fill up.

25
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Full DuplexFull Duplex

• TCP provides transfer in both
directions.

• To the application program these
appear as 2 unrelated data streams,
although TCP can piggyback control
and data communication by providing
control information (such as an ACK)
along with user data.

26
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP PortsTCP Ports

• Interprocess communication via
TCP is achieved with the use of
ports (just like UDP).

• UDP ports have no relation to TCP
ports (different name spaces).

27
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP SegmentsTCP Segments

• The chunk of data that TCP asks IP
to deliver is called a TCP segment.

• Each segment contains:
• data bytes from the byte stream
• control information that identifies the

data bytes

28
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP Segment Format TCP Segment Format

Destination Port

Options (if any)

Data

1 byte 1 byte

Source Port
Sequence Number

Acknowledgment Number

1 byte 1 byte

offset Reser. Control Window
Checksum Urgent Pointer

29
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP LingoTCP Lingo

• When a client requests a connection it
sends a “SYN” segment (a special TCP
segment) to the server port.

• SYN stands for synchronize. The SYN
message includes the client’s ISN.

• ISN is Initial Sequence Number.

30
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

More...More...
• Every TCP segment includes a

Sequence Number that refers to the first
byte of data included in the segment.

• Every TCP segment includes an
Acknowledgement Number that
indicates the byte number of the next
data that is expected to be received.
• All bytes up through this number have

already been received.

31
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

And more...And more...

• There are a bunch of control flags:
• URG: urgent data included.
• ACK: this segment is (among other things)

an acknowledgement.
• RST: error – connection must be reset.
• SYN: synchronize Sequence Numbers

(setup)
• FIN: polite connection termination.

32
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

And more...And more...

• MSS: Maximum segment size (A TCP
option)

• Window: Every ACK includes a Window
field that tells the sender how many
bytes it can send before the receiver will
have to toss it away (due to fixed buffer
size).

33
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP Connection CreationTCP Connection Creation

• Programming details later - for now we
are concerned with the actual
communication.

• A server accepts a connection.
• Must be looking for new connections!

• A client requests a connection.
• Must know where the server is!

34
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Client StartsClient Starts

• A client starts by sending a SYN
segment with the following information:
• Client’s ISN (generated pseudo-randomly)
• Maximum Receive Window for client.
• Optionally (but usually) MSS (largest

datagram accepted).
• No payload! (Only TCP headers)

35
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Server ResponseServer Response
• When a waiting server sees a new

connection request, the server sends
back a SYN segment with:
• Server’s ISN (generated pseudo-randomly)
• Request Number is Client ISN+1
• Maximum Receive Window for server.
• Optionally (but usually) MSS
• No payload! (Only TCP headers)

36
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

FinallyFinally

• When the Server’s SYN is received, the
client sends back an ACK with:
• Acknowledgment Number is Server’s

ISN+1

37
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

SYN
ISN=X
SYN

ISN=X

Client Server

SYN
ISN=Y ACK=X+1

SYN
ISN=Y ACK=X+1

ACK=Y+1ACK=Y+1

1

2

3

38
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP 3TCP 3--way handshakeway handshake

Client: “I want to talk, and I’m starting with byte
number X”.

Server: “OK, I’m here and I’ll talk. My first byte
will be called number Y, and I know your first
byte will be number X+1”.

Client: “Got it - you start at byte number Y+1”.

Bill: “Monica, I’m afraid I’ll syn and byte your
ack”

1

2

3

?

39
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Why 3Why 3--Way?Way?

• Why is the third message necessary?

• HINTS:
• TCP is a reliable service.
• IP delivers each TCP segment.
• IP is not reliable.

40
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP Data and ACKTCP Data and ACK

• Once the connection is established,
data can be sent.

• Each data segment includes a
sequence number identifying the first
byte in the segment.

• Each segment (data or empty) includes
a request number indicating what data
has been received.

41
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

BufferingBuffering

• Keep in mind that TCP is part of the
Operating System. The O.S. takes care
of all these details asynchronously.

• The TCP layer doesn’t know when the
application will ask for any received
data.

• TCP buffers incoming data so it’s ready
when we ask for it.

42
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP BuffersTCP Buffers

• Both the client and server allocate
buffers to hold incoming and outgoing
data
• The TCP layer does this.

• Both the client and server announce
with every ACK how much buffer space
remains (the Window field in a TCP
segment).

43
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Send BuffersSend Buffers

• The application gives the TCP layer
some data to send.

• The data is put in a send buffer, where it
stays until the data is ACK’d.

• The TCP layer won’t accept data from
the application unless (or until) there is
buffer space.

44
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

ACKsACKs

• A receiver doesn’t have to ACK every
segment (it can ACK many segments
with a single ACK segment).

• Each ACK can also contain outgoing
data (piggybacking).

• If a sender doesn’t get an ACK after
some time limit, it resends the data.

45
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP Segment OrderTCP Segment Order

• Most TCP implementations will accept
out-of-order segments (if there is room
in the buffer).

• Once the missing segments arrive, a
single ACK can be sent for the whole
thing.

• Remember: IP delivers TCP segments,
and IP is not reliable - IP datagrams can
be lost or arrive out of order.

46
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TerminationTermination

• The TCP layer can send a RST
segment that terminates a connection if
something is wrong.

• Usually the application tells TCP to
terminate the connection politely with a
FIN segment.

47
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

FINFIN

• Either end of the connection can initiate
termination.

• A FIN is sent, which means the
application is done sending data.

• The FIN is ACK’d.
• The other end must now send a FIN.
• That FIN must be ACK’d.

48
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

FIN
SN=X
FIN

SN=X

App1 App2

ACK=X+1ACK=X+1

ACK=Y+1ACK=Y+1

1

2

4

FIN
SN=Y
FIN

SN=Y
3

...

49
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP TerminationTCP Termination
1

2

3

4

App1: “I have no more data for you”.

App2: “OK, I understand you are done sending.”
dramatic pause…

App2: “OK - Now I’m also done sending data”.

App1: “Roger, Over and Out, Goodbye,
Hastalavista Baby, Adios, It’s been real ...”

camera fades to black ...

50
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP TIME_WAITTCP TIME_WAIT
• Once a TCP connection has been

terminated (the last ACK sent) there is
some unfinished business:
• What if the ACK is lost? The last FIN will

be resent and it must be ACK’d.
• What if there are lost or duplicated

segments that finally reach the destination
after a long delay?

• TCP hangs out for a while to handle
these situations.

51
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

TCP Sockets ProgrammingTCP Sockets Programming

• Creating a passive mode (server)
socket.

• Establishing an application-level
connection.

• Sending/receiving data.
• Terminating a connection.

52
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Establishing a passive mode Establishing a passive mode
TCP socketTCP socket

Passive mode:
• Address already determined.

• Tell the kernel to accept incoming connection
requests directed at the socket address.
•3-way handshake

• Tell the kernel to queue incoming connections
for us.

53
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Accepting an incoming Accepting an incoming
connection.connection.
• Once we start listening on a socket, the

O.S. will queue incoming connections
• Handles the 3-way handshake
• Queues up multiple connections.

• When our application is ready to handle
a new connection, we need to ask the
O.S. for the next connection.

54
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Terminating a TCP connectionTerminating a TCP connection

• Either end of the connection can call the
close() system call.

• If the other end has closed the
connection, and there is no buffered
data, reading from a TCP socket returns
0 to indicate EOF.

55
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Client CodeClient Code

• TCP clients can connect to a server,
which:
• takes care of establishing an endpoint

address for the client socket.
• don’t need to call bind first, the O.S. will take

care of assigning the local endpoint address
(TCP port number, IP address).

• Attempts to establish a connection to the
specified server.
•3-way handshake

56
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Reading from a TCP socketReading from a TCP socket

• By default read() will block until data is
available.

• Reading from a TCP socket may return
less than max bytes (whatever is
available).

• You must be prepared to read data 1
byte at a time!

57
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Writing to a TCP socketWriting to a TCP socket

• write might not be able to write all bytes
(on a nonblocking socket).

58
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Metaphor for Good RelationshipsMetaphor for Good Relationships
Copyright Dr. Laura’s Network Programming Corp.Copyright Dr. Laura’s Network Programming Corp.

To succeed in relationships:
• you need to establish your own identity.

• you need to be open & accepting.

• you need to establish contacts.

• you need to take things as they come, not
as you expect them.

• you need to handle problems as they arise.

bin
d()

accept()

connect()

check for errors

read might return 1 byte

59
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Java Sockets ProgrammingJava Sockets Programming

• The package java.net provides support
for sockets programming

• Typically you import everything defined
in this package with:

import java.net.*;

60
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

ClassesClasses

InetAddress
Socket

ServerSocket
DatagramSocket
DatagramPacket

UDPUDP

61
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Socket classSocket class

• Corresponds to active TCP sockets only!
• client sockets
• socket returned by accept();

• Passive sockets are supported by a
different class: ServerSocket

62
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Socket ConstructorsSocket Constructors

• Constructor creates a TCP connection
to a named TCP server.
• There are a number of constructors:
Socket(InetAddress server, int port);

Socket(InetAddress server, int port,
InetAddress local, int localport);

Socket(String hostname, int port);

63
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Socket MethodsSocket Methods

void close();
InetAddress getInetAddress(); getpeername
InetAddress getLocalAddress(); getsockname
InputStream getInputStream();
OutputStream getOutputStream();

• Lots more (setting/gettting socket options,
partial close, etc.)

64
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Socket I/OSocket I/O

• Socket I/O is based on the Java I/O
support (in the package java.io).

• InputStream and OutputStream are
abstract classes
• common operations defined for all kinds of

InputStreams, OutputStreams…

65
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

ServerSocket ServerSocket ClassClass
(TCP Passive Socket)(TCP Passive Socket)
•Constructors:

ServerSocket(int port);

ServerSocket(int port, int
backlog);

ServerSocket(int port, int backlog,
InetAddress bindAddr);

66
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

ServerSocket ServerSocket MethodsMethods
Socket accept();

void close();

InetAddress getInetAddress();

int getLocalPort();

throw IOException, SecurityException

67
Netprog 2002 TCP/IPNetprog 2002 TCP/IP

Sample Echo ServerSample Echo Server

TCPEchoServer.java, EchoClient.java,
GenericClient.java

Simple TCP Echo server.

Based on code from:
TCP/IP Sockets in Java, Java Online

Tutorial

