Web Sessions

It's all an illusion (at the HTTP layer)
Sessions

• Many web sites allow you to establish a session.
 – you identify yourself to the system.
 – now you can visit lots of pages, add stuff to shopping cart, establish preferences, etc.
State Information

- Remember that each HTTP request is unrelated to any other (as far as the Web server is concerned).
- Each new request to a server starts up a brand new copy of the server program (a new thread, or a new process).
- Providing sessions requires keeping state information.
Hi! I'm Davey.

Hi Davey (it's him again) Welcome Back...

I wanna buy a cookie.

OK Davey, it will be there tomorrow.
Hidden Field Usage

- One way to propagate state information is to use hidden fields.
- User identifies themselves to a server program (fills out a form).
- Server sends back a form that contains hidden fields that identify the user or session.
Revised Conversation

Initial form has field for user name.

GET /prog1?name=davey HTTP/1.0

Prog1 creates order form with hidden field.

GET /prog2?name=davey&order=cookie HTTP/1.0
Session Keys

• Many Web based systems use hidden fields that identify a session.

• When the first request arrives, the system generates a unique session key and stores it in a database.

• The session key can be included in all forms/links generated by the system (as a hidden field or embedded in a link).
Session Key Properties

- Must be unique.
- Should expire after a while.
- Should be difficult to predict.
 - Typically use a pseudo-random number generator seeded carefully.
Server Session Keys

- A server using session keys:

\[
\text{<INPUT TYPE=HIDDEN}
\begin{array}{l}
\text{NAME=sessionkey} \\
\text{VALUE=HungryStudent971890237>}
\end{array}
\]
Pizza Order

A request to order a pizza might now look like this (all on one line):

```
GET /pizza?sessionkey=HungryStudent971890237&pizza=cheese&size=large HTTP/1.0
```
HTTP Cookies

- A “cookie” is a name,value pair that a server program can ask the client to remember.
- The client sends this name,value pair along with every request to the server.
- We can also use "cookies" to propagate state information.
Cookies are HTTP

- Cookies are HTTP headers.
- A server can *give* the browser a cookie by sending a `Set-Cookie` header line with the response.
- A client can send back a cookie by sending a `Cookie` header line with the request.
Setting a cookie

HTTP/1.0 200 OK
Content-Type: text/html
Set-Cookie: customerid=0192825
Content-Length: 12345
Favorite-Company: IBM
Nap-Time: 12-2
...

Netprog 2002 - HTTP
Set-Cookie

Header Options

The general form of the Set-Cookie header is:

Set-Cookie: name=value; options

The options include:

expires=...
domain=...
path=...
expires Option

expires=Friday 29-Feb-2000 00:00:00 GMT

- This tells the browser how long to hang on to the cookie.

- The time/date format is very specific!
expires

Time Format

Weekday, Day-Month-Year
Hour:Minute:Second GMT

• This all must be on one line!
• Weekday is spelled out.
• Month is 3 letter abbreviation
• Year is 4 digits
Default expiration

- If there is no expires option on the Set-Cookie header line, the browser does not save the cookie to disk.

- In this case, when the browser is closed it will forget about the cookie.
domain Option

```
domain= .rpi.edu
```

- The domain option tells the browser the **domain(s)** to which it should send the cookie.
- **Domains** as in DNS.
- The domain must start with "." and contain at least one additional "."
domain
option rules

• The server that sends the Set-Cookie header must be in the domain specified.

• If no domain option is in the header, the cookie will only be sent to the same server.
path Option

```plaintext
path=/
```

or

```plaintext
path=/~hollingd/netprog
```

- The path option tells the browser what URLs the cookie should be sent to.
If no path is specified in the header, the cookie is sent to only those URLs that have the same path as the URL that set the cookie.

A path is the leading part of the URL (does not include the filename).
Default Path
Example

If the cookie is sent from:

/~hollingd/netprog/pizza/pizza

it would also be sent to

/~hollingd/netprog/pizza/blah

but not to

/~hollingd/netprog/soda/coke
Set-Cookie Fields

• Many options can be specified.
• Things are separated by ":[";":

```
Set-Cookie: a=blah; path=/;
   domain=.cs.rpi.edu;
 expires=Thursday, 21-Feb-2002 12:41:07 2002
```

All must be on one line!
Cookie creation

• A server program can send back any number of HTTP headers.
 – can set multiple cookies

• Content-Type is required!

• Blank line ends the headers!
Example

Content-Type: text/html
Set-Cookie: prefs=nofrms
Set-Cookie: Java=yes

... now sends document content
Getting Cookies

Drop by Dave's office anytime!

If you want cookies, you might consider bringing some with you...
Getting HTTP Cookies

• The browser sends each cookie as a header:

 Cookie: prefs=nofrms

 Cookie: Java=OK

• The Web server reads the cookies from the headers. CGI and servlets pass the cookies via environment variables or via the HttpServletRequest getCookies() method (which returns an array of Cookies).
Multiple Cookies

- There can be more than one cookie.
- Using CGI, the Web Server puts them all together like this:

  ```
  prefs=nofrms; Java=OK
  ```

 and puts this string in the environment variable: `HTTP_COOKIE`

Using Servlets, you can use:

```java
...cookies[i].getName();...
...cookies[i].getValue();...
...cookies[i].getVersion();...
```
Cookie Limits

- Each cookie can be up to 4k bytes.
- One "site" can store up to 20 cookies on a user's machine.
Cookie Usage

- Create a session.
- Track user browsing behavior.
- Keep track of user preferences.
- Avoid logins.
Cookies and Privacy

- Cookies can't be used to:
 - send personal information to a web server without the user knowing about it.
 - be used to send viruses to a browser.
 - find out what other web sites a user has visited.
 - access a user's hard disk
Some Issues

• Persistent cookies take up space on user's hard disk.
• Can be used to track your behavior within a web site.
 – This information can be sold or shared.
• Cookies can be shared by cooperating sites (advertising agencies do this).