
1

C. Varela 1

Concurrent Object-Oriented
Programming
 Java (VRH 7.7,8.6)

Carlos Varela
RPI

Partly adapted with permission from:
D. Hollinger, J.J. Johns, RPI

C. Varela 2

Overview

• Crash Course in Java
• Types and Classes
• Method Overloading; Multimethods
• Concurrency support

C. Varela 3

What is Java?
• A programming language.

– As defined by Gosling, Joy, and Steele in the Java Language Specification
• A platform

– A virtual machine (JVM) definition.
– Runtime environments in diverse hardware.

• A class library
– Standard APIs for GUI, data storage, processing, I/O, and networking.

C. Varela 4

Why Java?
• Java has substantial differences with C++

– error handling (compiler support for exception handling checks)
– no pointers (garbage collection)
– threads are part of the language
– dynamic class loading and secure sandbox execution for remote code
– source code and bytecode-level portability

C. Varela 5

Java notes for C++ programmers
• (Almost) everything is an object.

– Every object inherits from java.lang.Object
– Primitive data types are similar: boolean is not an int.

• No code outside of class definitions
– No global variables

• Single class inheritance
– an additional kind of inheritance: multiple interface inheritance

• All classes are defined in .java files
– one top level public class per file

C. Varela 6

First Program

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Hello World");
 }
}

2

C. Varela 7

Compiling and Running

HelloWorld.java
javac HelloWorld.java

java HelloWorld HelloWorld.class

compile
run

bytecode

source code

C. Varela 8

Java bytecode and interpreter
• Java bytecode is an intermediate representation of the

program (stored in .class file)

• The Java interpreter starts up a new “Virtual Machine”.

• The VM starts executing the user’s class by running its
main() method.

C. Varela 9

PATH and CLASSPATH
• PATH and CLASSPATH are environment variables that

tell your operating system where to find programs.

• The java_home/bin directory should be in your $PATH

• If you are using any classes outside the java or javax
packages, their locations must be included in your
$CLASSPATH

C. Varela 10

The Language
• Data types
• Operators
• Control Structures
• Classes and Objects
• Packages

C. Varela 11

Java Primitive Data Types
• Primitive Data Types:

– boolean true or false
– char unicode (16 bits)
– byte signed 8 bit integer
– short signed 16 bit integer
– int signed 32 bit integer
– long signed 64 bit integer
– float,double IEEE 754 floating point

C. Varela 12

Other Data Types
• Reference types (composite)

– objects
– arrays

• strings are supported by a built-in class named String
(java.lang.String)

• string literals are supported by the language (as a special
case).

3

C. Varela 13

Type Conversions
• Conversion between integer types and floating point types.

– this includes char

• No automatic conversion from or to the type boolean.
• You can force conversions with a cast – same syntax as

C/C++.
int i = (int) 1.345;

C. Varela 14

Operators
• Assignment: =, +=, -=, *=, …
• Numeric: +, -, *, /, %, ++, --, …
• Relational: ==. !=, <, >, <=, >=, …
• Boolean: &&, ||, !
• Bitwise: &, |, ^, ~, <<, >>, …

Just like C/C++!

C. Varela 15

Control Structures

Conditional statements:
 if, if else, switch

Loop statements:
 while, for, do

C. Varela 16

Exceptions
• Terminology:

– throw an exception: signal that some condition (possibly an error)
has occurred.

– catch an exception: deal with the error.

• In Java, exception handling is necessary (forced by the
compiler)!

C. Varela 17

Try/Catch/Finally
try {

// code that can throw an exception
} catch (ExceptionType1 e1) {
 // code to handle the exception
} catch (ExceptionType2 e2) {
 // code to handle the exception
} catch (Exception e) {
 // code to handle other exceptions
} finally {
 // code to run after try or any catch
}

C. Varela 18

Exception Handling
• Exceptions take care of handling errors

– instead of returning an error, some method calls will throw an
exception.

• Can be dealt with at any point in the method invocation
stack.

• Forces the programmer to be aware of what errors can
occur and to deal with them.

4

C. Varela 19

Classes and Objects
• All Java statements appear within methods, and all

methods are defined within classes.
• Instead of a “standard library”, Java provides a set of

packages with classes supported in all Java
implementations.

C. Varela 20

Defining a Class
• One top level public class per .java file.

– typically end up with many .java files for a single program.
– One (at least) has a static public main() method.

• Class name must match the file name!
– compiler/interpreter use class names to figure out what file name

is.

• Package hierarchy should match directory structure.

C. Varela 21

Sample Class
(from Java in a Nutshell)

public class Point {
public double x,y;
public Point(double x, double y) {

this.x = x; this.y=y;
}
public double distanceFromOrigin(){

return Math.sqrt(x*x+y*y);
}

}

C. Varela 22

Objects and new
You can declare a variable that can hold an object:

Point p;

but this doesn’t create the object!

You have to use new:
Point p = new Point(3.1,2.4);

C. Varela 23

Using objects
• Just like C++:

– object.method()
– object.field

• BUT, never like this (no pointers!)
– object->method()
– object->field

C. Varela 24

Strings are special
• You can initialize Strings like this:

String blah = "I am a literal ";

• Or this (+ String operator):

String foo = "I love " + "RPI";

5

C. Varela 25

Arrays
• Arrays are supported as a second kind of reference type

(objects are the other reference type).
• Although the way the language supports arrays is different

than with C++, much of the syntax is compatible.
– however, creating an array requires new

C. Varela 26

Array Examples

int x[] = new int[1000];

byte[] buff = new byte[256];

float[][] vals = new float[10][10];

C. Varela 27

Notes on Arrays
• index starts at 0.
• arrays can’t shrink or grow.

– e.g., use Vector instead.

• each element is initialized.
• array bounds checking (no overflow!)

– ArrayIndexOutOfBoundsException

• Arrays have a .length

C. Varela 28

Array Example Code
int[] values;

int total=0;

for (int i=0;i<values.length;i++) {
total += values[i];

}

C. Varela 29

Array Literals
• You can use array literals like C/C++:

int[] foo = {1,2,3,4,5};

String[] names = {“Joe”, “Sam”};

C. Varela 30

Reference Types
• Objects and Arrays are reference types
• Primitive types are stored as values.
• Reference type variables are stored as references (pointers

that are not first-class).
• There are significant differences!

6

C. Varela 31

Primitive vs. Reference Types
int x=3;
int y=x;

Point p = new Point(2.3,4.2);
Point t = p;

Point p = new Point(2.3,4.2);
Point t = new Point(2.3,4.2);

There are two copies of
the value 3 in memory

There is only one Point
object in memory!

C. Varela 32

Passing arguments to methods

• Primitive types are passed by value: the method gets a
copy of the value. Changes won’t show up in the caller.

• Reference types: the method gets a copy of the reference,
so the method accesses the same object
– However, the object reference is passed by value. Changing the

reference does not change the outside object!

C. Varela 33

Example
int sum(int x, int y) {

x=x+y;
return x;

}

void increment(int[] a) {
for (int i=0;i<a.length;i++) {

a[i]++;
}

}

C. Varela 34

Comparing Reference Types
• Comparison using == means:

– “are the references the same?”
– (do they refer to the same object?)

• Sometimes you just want to know if two objects/arrays are
identical copies.
– use the .equals() method

• you need to write this for your own classes!

C. Varela 35

Packages
• You can organize a bunch of classes and interfaces into a

package.
– defines a namespace that contains all the classes.

• You need to use some java packages in your programs, e.g.
– java.lang java.io, java.util

C. Varela 36

Importing classes and packages
• Instead of #include, you use import
• You don’t have to import anything, but then you need to

know the complete name (not just the class, the package).
– if you import java.io.File you can use File objects.
– If not – you need to use java.io.File inside the program.

• You need not import java.lang (imported by default).

7

C. Varela 37

Compiling
• Multiple Public classes:

– need a file for each class.
– Telling the compiler to compile the class with main().

• automatically finds and compiles needed classes.

C. Varela 38

Access Control
• Public – everyone has access
• Private – no one outside this class has access
• Protected – subclasses have access
• Default – package-access

C. Varela 39

Final Modifier
• final class – cannot be subclassed
• final method – cannot be overriden
• final field – cannot have its value changed. Static final

fields are compile time constants.
• final variable – cannot have its value changed

C. Varela 40

Static Modifier
• static method – a class method that can only be accessed

through the class name, and does not have an implicit this
reference.

• static field – A field that can only be accessed through the
class name. There is only 1 field no matter how many
instances of the class there are.

C. Varela 41

Classes vs Types
• Every object o has a class c.
• Is c the type of the object?
• Suppose d < c (d is a subclass of c) then an object o2 of

class d can be used anywhere an object of class c is used
(called subclass polymorphism).

• Therefore, an object o is of type c if and only if o’s class d
is either:
1. = c, or
2. < c

C. Varela 42

instanceof operator
• Dynamically checks for an object’s type.

o instanceof t

• tests whether the value of o has type t (whether the class of
o is assignment compatible with reference type t).

8

C. Varela 43

Interfaces
• A Java interface lists a number of method signatures for

methods that need to be implemented by any class that
“implements” the interface.

• E.g.:

public interface Figure {
 public double getArea() {}
}

C. Varela 44

Interfaces
• A Java class that implements an interface must provide an

implementation for all the methods in the interface.
• E.g.:

public class Point implements Figure {
 ...
 public double getArea() { return 0.0 }
}

C. Varela 45

Multiple Interface Inheritance
• A Java class may implement more than one interface
• E.g.:

public class Circle implements Figure, Fillable {
 ...
 public double getArea() {
 return Math.PI * radius * radius;
 }
 public void fill(Color c) {…}
}

C. Varela 46

Using Interfaces as Types
• The Java language allows the usage of interfaces as types for

polymorphism. E.g., it knows that any object of a class that
implements the Figure interface will have a getArea() method:

public double totalArea(Figure[] figures) {
 // sum everything up

double total=0.0;
for (int i=0;i<figures.length;i++) {
 total += figures[i].getArea();
}

return total;
 }
}

C. Varela 47

Method Overloading
• In a statically typed language, a method can be overloaded

by taking arguments of different types.
• E.g.:

• The return type cannot be overloaded.
• The types can be related, e.g:

public int m(Circle c){ return 1;}
public int m(String s){ return 2;}

public int m(Object o){ return 1;}
public int m(String s){ return 2;}

C. Varela 48

Method Dispatching and
Multimethods

• Which method gets dispatched can be decided at compile-
time based on declared argument types information (Java),
or at run-time with multi-methods (Smalltalk, SALSA).

public int m(Object o){ return 1;}
public int m(String s){ return 2;}

Object o = new Object();
String s = new String(“hi”);
Object os = new String(“foo”);
m(o); // returns 1
m(s); // returns 2
m(os); // Static dispatch
 // returns 1; (Java)
 // Dynamic dispatch
 // returns 2. (SALSA)

9

C. Varela 49

Concurrent Programming in Java
• Java is multi-threaded.
• Two ways to create new threads:

– Extend java.lang.Thread
• Overwrite “run()” method.

– Implement Runnable interface
• Include a “run()” method in your class.

• Starting a thread
– new MyThread().start();
– new Thread(runnable).start();

C. Varela 50

The synchronized Statement
• To ensure only one thread can run a block of code, use

synchronized:

synchronized (object) {
 // critical code here
}

• Every object contains an internal lock for synchronization.

C. Varela 51

synchronized as a modifier

• You can also declare a method as synchronized:

synchronized int blah(String x) {
 // blah blah blah
}

 equivalent to:

int blah(String x) {
 synchronized (this) {
 // blah blah blah
 }
}

C. Varela 52

Concurrency and state
are tough when used together

• Execution consists of multiple threads, all executing
independently and all using shared memory

• Because of interleaving semantics, execution happens as if
there was one global order of operations

• Assume two threads and each thread does k operations.
Then the total number of possible interleavings is
This is exponential in k.

• One can program by reasoning on all possible
interleavings, but this is extremely hard. What do we do?

2k
k()

C. Varela 53

Exercises

56. Do Java and C++ object abstractions completely
encapsulate internal state? If so, how? If not, why?

57. Do Java and C++ enable static access to methods defined
in classes arbitrarily high in the inheritance hierarchy? If
so, how? If not, why?

58. Do Java and C++ allow multiple inheritance? If so, how?
If not, why?

59. *Write, compile and execute a Java program in your
laptop.

