Concurrent Object-Oriented
Programming
Java (VRH 7.7,8.6)

Carlos Varela
RPI

Partly adapted with permission from:
D. Hollinger, J.J. Johns, RPI

C. Varela 1

Overview

Crash Course in Java

Types and Classes

Method Overloading; Multimethods
Concurrency support

C. Varela

What 1s Java?

* A programming language.

— As defined by Gosling, Joy, and Steele in the Java Language Specification
« A platform

— A virtual machine (JVM) definition.

— Runtime environments in diverse hardware.
« A class library

— Standard APIs for GUI, data storage, processing, I/0, and networking.

C. Varela 3

Why Java?

Java has substantial differences with C++

error handling (compiler support for exception handling checks)

no pointers (garbage collection)

threads are part of the language

dynamic class loading and secure sandbox execution for remote code
source code and bytecode-level portability

C. Varela

Java notes for C++ programmers

* (Almost) everything is an object.
— Every object inherits from java.lang.Object
— Primitive data types are similar: boolean is not an int.
* No code outside of class definitions
— No global variables
+ Single class inheritance
— an additional kind of inheritance: multiple interface inheritance
+ All classes are defined in . java files
— one top level public class per file

C. Varela 5

First Program

public class HelloWorld {
public static void main(String args[]) {
System.out.println("Hello World");
}

C. Varela

©

Compiling and Running

javac HelloWorld. java

HelloWorld. java
~

f compile

source code run

l 2

java HelloWorld HelloWorld.class

t_ bytecode

C. Varela 7

Java bytecode and interpreter

+ Java bytecode is an intermediate representation of the
program (stored in .class file)

+ The Java interpreter starts up a new “Virtual Machine”.

» The VM starts executing the user’s class by running its
main () method.

C. Varela 8

PATH and CLASSPATH

* PATH and CLASSPATH are environment variables that
tell your operating system where to find programs.

* The java_home/bin directory should be in your SPATH

+ Ifyou are using any classes outside the java or javax
packages, their locations must be included in your
SCLASSPATH

C. Varela 9

The Language

» Data types

* Operators

+ Control Structures

+ Classes and Objects
+ Packages

C. Varela 10

Java Primitive Data Types

 Primitive Data Types:

— boolean true or false

- char unicode (16 bits)

- byte signed 8 bit integer
- short signed 16 bit integer
- int signed 32 bit integer
- long signed 64 bit integer

- float,double IEEE 754 floating point

C. Varela 11

Other Data Types

* Reference types (composite)

— objects
— arrays

* strings are supported by a built-in class named string

(java.lang.String)

« string literals are supported by the language (as a special

case).

C. Varela 12

Type Conversions

+ Conversion between integer types and floating point types.
— this includes char
* No automatic conversion from or to the type boolean.
* You can force conversions with a cast — same syntax as
C/C++.
int i = (int) 1.345;

C. Varela 13

Operators

* Assignment: =, +=, -=, ¥= .
e Numeric: +, -, *, /, %, ++, -, ...
* Relational: ==, |=, <, > <=>= .

* Boolean: &&, ||, !
+ Bitwise: &, |, ", ~, <<, >>, ...

Just like C/C++!

C. Varela 14

Control Structures

Conditional statements:
if, if else, switch

Loop statements:
while, for, do

C. Varela 15

Exceptions

+ Terminology:

— throw an exception: signal that some condition (possibly an error)
has occurred.

— catch an exception: deal with the error.

* In Java, exception handling is necessary (forced by the
compiler)!

C. Varela 16

Try/Catch/Finally

try {

// code that can throw an exception
} catch (ExceptionTypel el) {

// code to handle the exception
} catch (ExceptionType2 e2) {

// code to handle the exception
} catch (Exception e) {

// code to handle other exceptions
} finally {

// code to run after try or any catch

}

C. Varela 17

Exception Handling

+ Exceptions take care of handling errors

— instead of returning an error, some method calls will throw an
exception.

+ Can be dealt with at any point in the method invocation
stack.

+ Forces the programmer to be aware of what errors can
occur and to deal with them.

C. Varela 18

Classes and Objects

+ All Java statements appear within methods, and all
methods are defined within classes.

* Instead of a “standard library”, Java provides a set of
packages with classes supported in all Java
implementations.

C. Varela 19

Defining a Class

* One top level public class per .java file.
— typically end up with many .java files for a single program.
— One (at least) has a static public main() method.
+ Class name must match the file name!
— compiler/interpreter use class names to figure out what file name
is.

+ Package hierarchy should match directory structure.

C. Varela 20

Sample Class

(from Java in a Nutshell)

public class Point {
public double x,y;
public Point(double x, double y) {
this.x = x; this.y=y;
}
public double distanceFromOrigin() {
return Math.sqrt (x*x+y*y);

C. Varela 21

Objects and new

You can declare a variable that can hold an object:
Point p;
but this doesn’t create the object!

You have to use new:
Point p = new Point(3.1,2.4);

C. Varela 22

Using objects

+ Just like C++:
- object.method()
- object.field

* BUT, never like this (no pointers!)
- object->method()
— object->field

C. Varela 23

Strings are special
* You can initialize Strings like this:
String blah = "I am a literal ";
* Or this (+ String operator):

String foo = "I love " + "RPI";

C. Varela 24

Arrays

* Arrays are supported as a second kind of reference type
(objects are the other reference type).

+ Although the way the language supports arrays is different
than with C++, much of the syntax is compatible.

— however, creating an array requires new

C. Varela 25

Array Examples

int x[] = new int[1000];
byte[] buff = new byte[256];

float[][] vals = new float[10][10];

C. Varela 26

Notes on Arrays

¢ index starts at 0.

* arrays can’t shrink or grow.
— e.g., use Vector instead.

+ each element is initialized.

+ array bounds checking (no overflow!)
— ArrayIndexOutOfBoundsException

* Arrays have a .length

C. Varela 27

Array Example Code
int[] values;
int total=0;

for (int i=0;i<values.length;i++) {

total += values[i];

C. Varela 28

Array Literals

* You can use array literals like C/C++:
int[] foo = {1,2,3,4,5};

String[] names = {“Joe”, “Sam”};

C. Varela 29

Reference Types

+ Objects and Arrays are reference types
 Primitive types are stored as values.

+ Reference type variables are stored as references (pointers
that are not first-class).

 There are significant differences!

C. Varela 30

Primitive vs. Reference Types

int x=3;
int y=x;

Point p = new Point(2.3,4.2);
Point t = p;

Point p = new Point(2.3,4.2);
Point t = new Point(2.3,4.2);

Passing arguments to methods

* Primitive types are passed by value: the method gets a
copy of the value. Changes won’t show up in the caller.

+ Reference types: the method gets a copy of the reference,
so the method accesses the same object

— However, the object reference is passed by value. Changing the
reference does not change the outside object!

C. Varela 31 C. Varela 32
Example -
b Comparing Reference Types
int sum(int x, int y) { . .
x=x4y; » Comparison using == means:
return x; — “are the references the same?”

void increment (int[] a) {
for (int i=0;i<a.length;i++) {
afi]++;

C. Varela 33

— (do they refer to the same object?)
» Sometimes you just want to know if two objects/arrays are
identical copies.
— use the .equals () method
« you need to write this for your own classes!

C. Varela 34

Packages

* You can organize a bunch of classes and interfaces into a
package.
— defines a namespace that contains all the classes.
* You need to use some java packages in your programs, e.g.
— javalang java.io, java.util

C. Varela 35

Importing classes and packages

* Instead of #include, you use import
* You don’t have to import anything, but then you need to
know the complete name (not just the class, the package).
— if you import java.io.File you canuse File objects.
— Ifnot — you need to use java.io.File inside the program.

* You need not import java.lang (imported by default).

C. Varela 36

Compiling

* Multiple Public classes:
— need a file for each class.

— Telling the compiler to compile the class with main().

« automatically finds and compiles needed classes.

C. Varela 37

Access Control

* Public — everyone has access

* Private — no one outside this class has access
* Protected — subclasses have access

+ Default — package-access

C. Varela 38

Final Modifier

« final class — cannot be subclassed
+ final method — cannot be overriden

« final field — cannot have its value changed. Static final
fields are compile time constants.

+ final variable — cannot have its value changed

C. Varela 39

Static Modifier

« static method — a class method that can only be accessed
through the class name, and does not have an implicit this
reference.

« static field — A field that can only be accessed through the
class name. There is only 1 field no matter how many
instances of the class there are.

C. Varela 40

Classes vs Types

+ Every object 0 has a class c.

+ Isc the type of the object?

* Suppose d < ¢ (d is a subclass of ¢) then an object 02 of
class d can be used anywhere an object of class ¢ is used
(called subclass polymorphism).

* Therefore, an object 0 is of type ¢ if and only if 0’s class d
is either:

1. =c,or
2. <c

C. Varela 41

instanceof operator

+ Dynamically checks for an object’s type.
o instanceof t
« tests whether the value of o has type t (whether the class of
o is assignment compatible with reference type t).

C. Varela 42

Interfaces

* A Java interface lists a number of method signatures for
methods that need to be implemented by any class that
“implements” the interface.

« Eg.:

public interface Figure {
public double getArea() {}
}

C. Varela 43

Interfaces

* A Java class that implements an interface must provide an
implementation for all the methods in the interface.

« Eg.:

public class Point implements Figure {

public double getArea() { return 0.0 }
}

C. Varela 44

Multiple Interface Inheritance

* A Java class may implement more than one interface
« Eg.:

public class Circle implements Figure, Fillable {

public double getArea() {
return Math.PI * radius * radius;

}
public void fill(Color c) {..}

}

C. Varela 45

Using Interfaces as Types

« The Java language allows the usage of interfaces as types for
polymorphism. E.g., it knows that any object of a class that
implements the Figure interface will have a getArea() method:

public double totalArea(Figure[] figures) {
// sum everything up
double total=0.0;
for (int i=0;i<figures.length;i++) {
total += figures[i].getArea();
}

return total;

C. Varela 46

Method Overloading

+ In a statically typed language, a method can be overloaded
by taking arguments of different types.
« Eg.:

public int m(Circle c){ return
public int m(String s){ return

N =

i}
i}
* The return type cannot be overloaded.

+ The types can be related, e.g:

public int m(Object o) { return
public int m(String s){ return

NG

C. Varela 47

Method Dispatching and
Multimethods

* Which method gets dispatched can be decided at compile-
time based on declared argument types information (Java),
or at run-time with multi-methods (Smalltalk, SALSA).

public int m(Object o){ return 1;}
public int m(String s){ return 2;}

Object o new Object();
String s = new String(“hi”);
Object os = new String(“foo”);
m(o) ; // returns 1
m(s); // returns 2
m(os); // Static dispatch
// returns 1; (Java)
// Dynamic dispatch
// returns 2. (SALSA)

C. Varela 48

Concurrent Programming in Java

« Java is multi-threaded.
« Two ways to create new threads:
— Extend java.lang.Thread
« Overwrite “run()” method.
— Implement Runnable interface
« Include a “run()” method in your class.
« Starting a thread
— new MyThread().start();
— new Thread(runnable).start();

C. Varela 49

The synchronized Statement

* To ensure only one thread can run a block of code, use
synchronized:

synchronized (object) {

// critical code here

+ Every object contains an internal lock for synchronization.

C. Varela 50

synchronized as a modifier

* You can also declare a method as synchronized:

synchronized int blah(String x) {
// blah blah blah
}

equivalent to:

int blah(String x) {
synchronized (this) {
// blah blah blah
}
}

C. Varela 51

Concurrency and state
are tough when used together

+ Execution consists of multiple threads, all executing
independently and all using shared memory

* Because of interleaving semantics, execution happens as if
there was one global order of operations

» Assume two threads and each thread does k operations.
Then the total number of possible interleavings is 7 o
This is exponential in k. (k)

+ One can program by reasoning on all possible
interleavings, but this is extremely hard. What do we do?

C. Varela 52

Exercises

56. Do Java and C++ object abstractions completely
encapsulate internal state? If so, how? If not, why?

57. Do Java and C++ enable static access to methods defined
in classes arbitrarily high in the inheritance hierarchy? If
so, how? If not, why?

58. Do Java and C++ allow multiple inheritance? If so, how?
If not, why?

59. *Write, compile and execute a Java program in your
laptop.

C. Varela 53

